找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery; Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2024 The

[復(fù)制鏈接]
樓主: expenditure
51#
發(fā)表于 2025-3-30 09:36:00 | 只看該作者
Factorization and Riccati Equations visualize DT models more completely. These capabilities allow us to observe and analyze: (1) relations between attributes, (2) individual cases relative to the DT structure, (3) data flow in the DT, (4) sensitivity of each split threshold in the DT nodes, and (5) density of cases in parts of the n-
52#
發(fā)表于 2025-3-30 15:30:58 | 只看該作者
Canonical Factorization and Applicationsaracteristics of page block classification data led to the development of an algorithm for imbalanced high-resolution data with multiple classes, which exploits the decision trees as a model design facilitator producing a model, which is more general than a decision tree. This work accelerates the o
53#
發(fā)表于 2025-3-30 19:10:47 | 只看該作者
Factorization of Measurable Matrix Functionsessfully evaluated in multiple computational experiments. This work is one of the steps to the full scope ML algorithms for mixed data supported by lossless visualization of n-D data in General Line Coordinates beyond Parallel Coordinates.
54#
發(fā)表于 2025-3-30 21:21:50 | 只看該作者
Operator Theory: Advances and Applicationsn reduction and visualization have been established. The capability of end users to find and observe hyperblocks, as well as the ability of side-by-side visualizations to make patterns evident, are among major advantages of hyperblock technology and the Hyper algorithm. A new method to visualize inc
55#
發(fā)表于 2025-3-31 02:17:35 | 只看該作者
Albrecht B?ttcher,Sergei Grudsky Experiments across multiple benchmark datasets show that this Visual Knowledge Discovery method can compete with other visual and computational Machine Learning algorithms while improving both interpretability and accuracy in linear and non-linear classifications. Major benefits from these expansio
56#
發(fā)表于 2025-3-31 06:26:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
来宾市| 瓦房店市| 舟曲县| 汾西县| 连云港市| 米泉市| 宜丰县| 沛县| 平罗县| 大理市| 遂宁市| 上犹县| 大邑县| 灵石县| 读书| 惠东县| 莫力| 宜丰县| 顺昌县| 荥经县| 永宁县| 甘德县| 高邮市| 咸宁市| 南郑县| 高台县| 辽宁省| 淮安市| 金坛市| 徐汇区| 宜都市| 新化县| 平远县| 泰安市| 石首市| 平果县| 革吉县| 临泽县| 宜都市| 甘南县| 临漳县|