找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Symbolic Mathematical Computation; International Confer Jacques Calmet,John A. Campbell,Jochen Pfalzgraf Confer

[復(fù)制鏈接]
查看: 55815|回復(fù): 63
樓主
發(fā)表于 2025-3-21 18:30:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation
期刊簡(jiǎn)稱(chēng)International Confer
影響因子2023Jacques Calmet,John A. Campbell,Jochen Pfalzgraf
視頻videohttp://file.papertrans.cn/163/162333/162333.mp4
學(xué)科分類(lèi)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Artificial Intelligence and Symbolic Mathematical Computation; International Confer Jacques Calmet,John A. Campbell,Jochen Pfalzgraf Confer
影響因子This book constitutes the refereed proceedings of the Third International Conference on Artificial Intelligence and Symbolic Mathematical Computation, AISMC-3, held in Steyr, Austria, in September 1996..The 19 revised full papers presented in the book were carefully selected by the program committee; also included are four invited survey and state-of-the-art contributions by Scott, Dillmann and Friedrich, Cohn, and Wang. Among the topics addressed are theorem proving, rewriting systems, symbolic computation, spatial reasoning, computational geometry, and automated deduction.
Pindex Conference proceedings 1996
The information of publication is updating

書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation影響因子(影響力)




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation被引頻次




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation年度引用




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation年度引用學(xué)科排名




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation讀者反饋




書(shū)目名稱(chēng)Artificial Intelligence and Symbolic Mathematical Computation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:39 | 只看該作者
Compromised updates in labelled databases,the inference rules, part of the control mechanism for the compromised approach. This mechanism helps the update operations to perform the reconciliation of conflicting inputs. The update operations invoke a specific revision method, which applies some compromising criteria for achieving the revised
板凳
發(fā)表于 2025-3-22 04:27:44 | 只看該作者
Programming by demonstration: A machine learning approach to support skill acquision for robots,tion representation. This task is not yet well understood nor solved in general. Second, if a generalization is required, induction algorithms must be applied to the sensor data trace, to find the most general user-intended robot function from only few examples. In this paper mainly the second probl
地板
發(fā)表于 2025-3-22 04:52:48 | 只看該作者
5#
發(fā)表于 2025-3-22 09:37:14 | 只看該作者
Solving geometrical constraint systems using CLP based on linear constraint solver, cooperation with a linear constraint solver. We define a representation for the real numbers, i.e. constructible numbers, occuring in Euclidean geometry. This representation preserves correctness and completeness of above algorithms. A survey over 512 theorems of Euclidean geometry shows that from
6#
發(fā)表于 2025-3-22 15:17:27 | 只看該作者
7#
發(fā)表于 2025-3-22 20:40:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:51 | 只看該作者
9#
發(fā)表于 2025-3-23 03:18:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:10:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱西市| 四会市| 耒阳市| 松阳县| 高邑县| 蒙自县| 民丰县| 青冈县| 永和县| 鄂伦春自治旗| 天峨县| 茶陵县| 白玉县| 扶沟县| 台安县| 庄浪县| 安仁县| 汝州市| 满城县| 德庆县| 秦安县| 河南省| 赤水市| 逊克县| 梁平县| 迁安市| 淮北市| 香格里拉县| 盐池县| 崇义县| 简阳市| 伊宁县| 班玛县| 昆山市| 铜鼓县| 徐州市| 绥中县| 巴里| 稷山县| 河西区| 皮山县|