找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2008; 9th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. Zur Conferenc

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 10:05:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:38:52 | 只看該作者
Facilitating the Genetic Counseling Processotor flux reference frame. Two approaches are considered: data mining with GMDH algorithm and gradual training of the NN in the desired frequency range. In both cases the accuracy of the estimator is significantly improved. Provided tests confirmed this feature and encourage to implement such an est
13#
發(fā)表于 2025-3-23 19:21:33 | 只看該作者
Listening to Clients: Attending Skills,ets, which contain the data from clinical studies following patients response for a given treatment. Such datasets may contain incomplete (censored) information on patients failure times. The proposed method is able to cope with censored observations and as the result returns the aggregated Kaplan-M
14#
發(fā)表于 2025-3-23 22:29:07 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:30 | 只看該作者
Facilitating the Genetic Counseling Processsk minimization and complexity regularization. We study convergence of the RBF networks for various radial kernels as the number of training samples increases. The rates of convergence are also examined.
16#
發(fā)表于 2025-3-24 09:56:32 | 只看該作者
Facilitating the Genetic Counseling Processroblem) and a steady-state one (for the economic optimisation subproblem). The algorithm is computationally efficient because it needs solving on-line only one quadratic programming problem. Unlike the classical control system structure, the necessity of repeating two nonlinear optimisation problems
17#
發(fā)表于 2025-3-24 13:51:03 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:37 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:20:39 | 只看該作者
Facilitating the Genetic Counseling Processormance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海淀区| 崇文区| 聂拉木县| 丹寨县| 江达县| 平远县| 奎屯市| 十堰市| 晋江市| 龙胜| 库车县| 湖口县| 南昌市| 湘阴县| 宁安市| 运城市| 平凉市| 安多县| 宜昌市| 蚌埠市| 满城县| 金阳县| 乐业县| 邢台县| 鄢陵县| 轮台县| 柘荣县| 金秀| 张家川| 平南县| 康乐县| 手游| 华安县| 东兰县| 苍溪县| 绥中县| 枣阳市| 庆安县| 庐江县| 依兰县| 鹰潭市|