找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 22nd International C Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada Conference proceedings 2023

[復制鏈接]
樓主: Interpolate
51#
發(fā)表于 2025-3-30 11:53:24 | 只看該作者
Christina Middelberg,Julia T?rperve accuracy without the need to directly optimize it in the agent’s reward function. In our experiments, we were able to reduce the total number of FLOPS of multiple popular neural network architectures by 5–10., incurring minimal or no performance drop and being on par with the solution found by maximizing the accuracy.
52#
發(fā)表于 2025-3-30 14:43:28 | 只看該作者
Application of?Monte Carlo Algorithms with?Neural Network-Based Intermediate Area to?the?Thousand Caements for computing complexity. The research showed no significant differences in the Monte Carlo approaches and the corresponding neural network methods. In the case of recursive method invocation, the effectiveness increased compared to the base methods.
53#
發(fā)表于 2025-3-30 19:26:34 | 只看該作者
Viscosity Estimation of?Water-PVP Solutions from?Droplets Using Artificial Neural Networks and?Imagestics to train an Artificial Neural Network model to estimate the viscosity values of the solutions. The proposed model was able to predict the viscosity value of the samples using the characteristics of their droplets with an accuracy of 83.08% on the test dataset.
54#
發(fā)表于 2025-3-30 23:44:02 | 只看該作者
55#
發(fā)表于 2025-3-31 04:46:00 | 只看該作者
https://doi.org/10.1007/978-3-031-42505-9algorithmic game theory and mechanism design; artificial intelligence; evolutionary algorithms; genetic
56#
發(fā)表于 2025-3-31 08:47:00 | 只看該作者
978-3-031-42504-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
57#
發(fā)表于 2025-3-31 12:35:08 | 只看該作者
Artificial Intelligence and Soft Computing978-3-031-42505-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
58#
發(fā)表于 2025-3-31 13:32:29 | 只看該作者
Medikolegale Aspekte im Rettungsdienstre of this paper contains a mathematical explanation for the batch approach, which can be utilized in the GQR algorithm. The final section of the article contains several simulations. They prove the novel approach to be superior to the original GQR algorithm.
59#
發(fā)表于 2025-3-31 19:31:38 | 只看該作者
Periphere und zentrale Venenzug?nge effectively reduce the high computational load of the LM algorithm. The detailed application of proposed methods in the process of learning neural networks is explicitly discussed. Experimental results have been obtained for all proposed methods and they confirm a very good performance of them.
60#
發(fā)表于 2025-4-1 00:58:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
军事| 县级市| 延寿县| 上犹县| 平湖市| 玉门市| 汝城县| 台北县| 南靖县| 丰城市| 柳州市| 临沧市| 丹棱县| 丽江市| 饶平县| 蒙阴县| 东明县| 偃师市| 庆元县| 河津市| 温宿县| 兴文县| 玉环县| 荃湾区| 江门市| 余江县| 昌平区| 岑溪市| 阳泉市| 建宁县| 澄江县| 阳信县| 泾源县| 瑞昌市| 卓尼县| 普安县| 新野县| 从江县| 舟曲县| 灵武市| 翁牛特旗|