找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 21st International C Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada Conference proceedings 2023

[復制鏈接]
樓主: aspirant
11#
發(fā)表于 2025-3-23 10:22:07 | 只看該作者
K. Biesalski,H. Eckhardt,K. Wickelearch experiment we have examined also other latest algorithms to select the best configuration of proposed model. Results show that our proposed BiLSTM deep learning neural network archived over 99% of accuracy.
12#
發(fā)表于 2025-3-23 15:21:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:20:17 | 只看該作者
14#
發(fā)表于 2025-3-24 00:38:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:55:37 | 只看該作者
16#
發(fā)表于 2025-3-24 07:38:19 | 只看該作者
Training Subjective Perception Biased Images of?Vehicle Ambient Lights with?Deep Belief Networks Usiof the contrastive divergence pre-training is analyzed on the accuracy of the trained networks. The results are promising for decision support in the production process to minimize the influence of subjectivity by human evaluators.
17#
發(fā)表于 2025-3-24 14:27:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:38:49 | 只看該作者
Analysis and?Detection of?DDoS Backscatter Using NetFlow Data, Hyperband-Optimised Deep Learning andke. In the following work, an analysis of the detection of DDoS Backscatter with the use of neural networks is performed. To this end, a novel dataset is collected and described, on which a hyperband-optimized neural network is trained, and the decision process of the classifier is explained using LIME and SHAP.
19#
發(fā)表于 2025-3-24 20:50:54 | 只看該作者
BiLSTM Deep Learning Model for?Heart Problems Detectionearch experiment we have examined also other latest algorithms to select the best configuration of proposed model. Results show that our proposed BiLSTM deep learning neural network archived over 99% of accuracy.
20#
發(fā)表于 2025-3-25 00:01:47 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岢岚县| 木里| 乾安县| 丰原市| 河北区| 鄂州市| 文昌市| 上虞市| 泸水县| 井陉县| 永胜县| 青阳县| 加查县| 思茅市| 五峰| 西峡县| 兴隆县| 习水县| 盱眙县| 类乌齐县| 日照市| 平陆县| 商河县| 达州市| 龙胜| 五河县| 枝江市| 武清区| 怀来县| 玉林市| 凯里市| 水富县| 廊坊市| 宁津县| 宣威市| 徐水县| 英超| 商水县| 襄城县| 资源县| 黄平县|