找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 11th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復制鏈接]
查看: 27052|回復: 61
樓主
發(fā)表于 2025-3-21 18:29:44 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence and Soft Computing
期刊簡稱11th International C
影響因子2023Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad
視頻videohttp://file.papertrans.cn/163/162304/162304.mp4
發(fā)行地址Fast-track conference proceedings.State-of-the-art research.Up-to-date results
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence and Soft Computing; 11th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings
影響因子The two-volume set LNAI 7267 and LNCS 7268 (together with LNCS 7269) constitutes the refereed proceedings of the 11th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2012, held in Zakopane, Poland in April/May 2012.The 212 revised full papers presented were carefully reviewed and selected from 483 submissions. The papers are organized in topical sections on neural networks and their applications, computer vision, image and speech analysis, data mining, hardware implementation, bioinformatics, biometrics and medical applications, concurrent parallel processing, agent systems, robotics and control, artificial intelligence in modeling and simulation, various problems od artificial intelligence.
Pindex Conference proceedings 2012
The information of publication is updating

書目名稱Artificial Intelligence and Soft Computing影響因子(影響力)




書目名稱Artificial Intelligence and Soft Computing影響因子(影響力)學科排名




書目名稱Artificial Intelligence and Soft Computing網絡公開度




書目名稱Artificial Intelligence and Soft Computing網絡公開度學科排名




書目名稱Artificial Intelligence and Soft Computing被引頻次




書目名稱Artificial Intelligence and Soft Computing被引頻次學科排名




書目名稱Artificial Intelligence and Soft Computing年度引用




書目名稱Artificial Intelligence and Soft Computing年度引用學科排名




書目名稱Artificial Intelligence and Soft Computing讀者反饋




書目名稱Artificial Intelligence and Soft Computing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:05:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:14 | 只看該作者
地板
發(fā)表于 2025-3-22 06:55:22 | 只看該作者
Incidental Neural Networks as Nomograms Generatorshe XIII Hilbert’s problem which was presented 1900 in the context of nomography, for the particular nomographic construction. The problem was solved by V. Arnold (a student of Andrey Kolomogorov) in 1957. For numeric data of unknown functional relation we developed the . as nomograms generators – the graphic calculating devices.
5#
發(fā)表于 2025-3-22 12:00:22 | 只看該作者
On Learning in a Time-Varying Environment by Using a Probabilistic Neural Network and the Recursive in time-varying environment. The general regression neural network is based on the orthogonal-type kernel functions. The appropriate algorithm is presented in a recursive form. Sufficient simulations confirm empirically the convergence of the algorithm.
6#
發(fā)表于 2025-3-22 15:04:45 | 只看該作者
Fachenglisch für GesundheitsberufeThis paper presents the parallel architecture of the Recurrent Multi Layer Perceptron learning algorithm. The proposed solution is based on the high parallel three dimensional structure to speed up learning performance. Detailed parallel neural network structures are explicitly shown.
7#
發(fā)表于 2025-3-22 18:22:58 | 只看該作者
Fachenglisch für GesundheitsberufeSufficient conditions for uniform convergence of general regression neural networks, based on the orthogonal series-type kernel, are given. The convergence is guarantee even if variance of noise diverges to infinity. Simulation results are presented.
8#
發(fā)表于 2025-3-22 23:10:30 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:18 | 只看該作者
https://doi.org/10.1007/978-3-540-28534-2Sufficient conditions for strong convergence of recursive general regression neural networks are given assuming nonstationary noise. The orthogonal series-type kernel is applied. Simulation results show convergence even if variance of noise diverges to infinity.
10#
發(fā)表于 2025-3-23 05:39:00 | 只看該作者
Norma Huss,Sandra Schiller,Matthias SchmidtA problem of learning in non-stationary environment is solved by making use of order statistics in combination with the Parzen kernel-type regression neural network. Probabilistic properties of the algorithm are investigated and weak convergence is established. Experimental results are presented.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 16:34
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阆中市| 鞍山市| 镇赉县| 车致| 富顺县| 阜康市| 虹口区| 尉氏县| 新竹市| 博湖县| 八宿县| 青州市| 厦门市| 昌黎县| 永胜县| 扶沟县| 辉南县| 石渠县| 惠来县| 九台市| 乳源| 安图县| 斗六市| 芦溪县| 藁城市| 弋阳县| 葵青区| 建昌县| 梓潼县| 安新县| 商丘市| 尖扎县| 曲阜市| 陕西省| 图们市| 广水市| 天等县| 福贡县| 奈曼旗| 常州市| 雷州市|