找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 15th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復制鏈接]
查看: 20590|回復: 58
樓主
發(fā)表于 2025-3-21 18:01:19 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence and Soft Computing
期刊簡稱15th International C
影響因子2023Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad
視頻videohttp://file.papertrans.cn/163/162296/162296.mp4
發(fā)行地址Includes supplementary material:
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence and Soft Computing; 15th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings
影響因子The two-volume set LNAI 9692 and LNAI 9693 constitutes the refereed?proceedings of the 15th International Conference on Artificial?Intelligence and Soft Computing, ICAISC 2016, held in Zakopane, Poland?in June 2016..The 134 revised full papers presented were?carefully reviewed and selected from 343 submissions.?The papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; agent systems, robotics and control; and pattern classification. The second volume is divided in the following parts: bioinformatics, biometrics and medical applications; data mining; artificial intelligence in modeling and simulation; visual information coding meets machine learning; and various problems of artificial intelligence.?
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Artificial Intelligence and Soft Computing影響因子(影響力)




書目名稱Artificial Intelligence and Soft Computing影響因子(影響力)學科排名




書目名稱Artificial Intelligence and Soft Computing網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence and Soft Computing網(wǎng)絡(luò)公開度學科排名




書目名稱Artificial Intelligence and Soft Computing被引頻次




書目名稱Artificial Intelligence and Soft Computing被引頻次學科排名




書目名稱Artificial Intelligence and Soft Computing年度引用




書目名稱Artificial Intelligence and Soft Computing年度引用學科排名




書目名稱Artificial Intelligence and Soft Computing讀者反饋




書目名稱Artificial Intelligence and Soft Computing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:16 | 只看該作者
Visualizing and Understanding Nonnegativity Constrained Sparse Autoencoder in?Deep?Learningt use the architecture of Nonnegativity Constrained Autoencoder (NCAE). We show that by constraining most of the weights in the network to be nonnegative using both . and . nonnegativity penalization, a more understandable structure can result with minute deterioration in classification accuracy. Al
板凳
發(fā)表于 2025-3-22 03:33:43 | 只看該作者
Experimental Analysis of Forecasting Solar Irradiance with Echo State Networks and?Simulating Anneal High forecast accuracy can help in the management of industrial strategies. We present an approach that combines the potential of a Neural Network named . and a well-known optimisation technique named .. We use the SA technique for selecting the meteorological variables relevant in the forecasting
地板
發(fā)表于 2025-3-22 08:37:24 | 只看該作者
Neural System for Power Load Prediction in a Week Time Horizoner neural networks that have common input. Each network is dedicated to predict the total load in one of the seven successive days. Various form of input vectors as well as various ways of encoding them were tested. Verification which type of input data are crucial as well as which periodic aspects
5#
發(fā)表于 2025-3-22 09:02:31 | 只看該作者
6#
發(fā)表于 2025-3-22 15:16:55 | 只看該作者
Parallel Learning of Feedforward Neural Networks Without Error Backpropagationd on a new idea of learning neural networks without error backpropagation. The proposed solution is based on completely new parallel structures to effectively reduce high computational load of this algorithm. Detailed parallel 2D and 3D neural network learning structures are explicitely discussed.
7#
發(fā)表于 2025-3-22 18:41:27 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:55 | 只看該作者
Ensemble ANN Classifier for Structural Health Monitoring often perform differently due to the random distribution of initial weights. These issues cause the practical use of ANNs a challenging task. Some of the mentioned drawbacks can be eliminated using ensembles of ANNs. However, relevance of a single ensemble member might be different in different cla
9#
發(fā)表于 2025-3-23 02:46:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:41:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
固始县| 静海县| 攀枝花市| 临猗县| 丹东市| 丘北县| 商河县| 宁河县| 宜良县| 班戈县| 平阴县| 昌图县| 江北区| 加查县| 兴国县| 东明县| 宜丰县| 将乐县| 密云县| 防城港市| 广灵县| 皮山县| 日喀则市| 金川县| 桓台县| 定结县| 黑龙江省| 呈贡县| 自治县| 建昌县| 宁德市| 沙雅县| 清苑县| 天柱县| 富阳市| 光山县| 松阳县| 诸城市| 苍南县| 定远县| 济宁市|