找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 16th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復(fù)制鏈接]
樓主: Gratification
21#
發(fā)表于 2025-3-25 06:38:38 | 只看該作者
https://doi.org/10.1007/978-1-4302-1050-4ness. Proposed DCT method is used to reduce the size of system which results in faster processing with limited and controlled precision lost. Proposed method is compared to other ones like Fuzzy Systems, Neural Networks, Support Vector Machines, etc. to investigate the ability to solve sample proble
22#
發(fā)表于 2025-3-25 09:21:13 | 只看該作者
23#
發(fā)表于 2025-3-25 15:07:33 | 只看該作者
Geometric Structures as Design Approach,onen learning rule is used with random parameters providing different neuron locations. Any new neuron configuration allows us to obtain a new ETSP solution. This new approach to exploring the solution space of the ETSP is easy to implement and suitable for relatively large ETSP problems. Furthermor
24#
發(fā)表于 2025-3-25 17:49:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:07 | 只看該作者
26#
發(fā)表于 2025-3-26 02:51:46 | 只看該作者
Author Profiling with Classification Restricted Boltzmann Machinesfiling framework with no need for handcrafted features and only minor use of text preprocessing and feature engineering. The classifier achieves competitive results when evaluated with the PAN-AP-13 corpus: 36.59% joint accuracy, 57.83% gender accuracy and 59.17% age accuracy. We also examine the re
27#
發(fā)表于 2025-3-26 07:18:44 | 只看該作者
28#
發(fā)表于 2025-3-26 10:07:28 | 只看該作者
Parallel Levenberg-Marquardt Algorithm Without Error Backpropagationhich will also work for MLP but some cells will stay empty. This approach is based on a very interesting idea of learning neural networks without error backpropagation. The presented architecture is based on completely new parallel structures to significantly reduce a very high computational load of
29#
發(fā)表于 2025-3-26 14:09:19 | 只看該作者
Spectral Analysis of CNN for Tomato Disease Identificationresults generated by a specific network without considering how the internal part of the network itself has generated those results. The visualization of the activations and features of the neurons generated by the network can help to determine the best network architecture for our proposed idea. By
30#
發(fā)表于 2025-3-26 20:14:13 | 只看該作者
From Homogeneous Network to Neural Nets with Fractional Derivative Mechanismuse of calculus of finite differences proposed by Dudek-Dyduch E. and then developed jointly with Tadeusiewicz R. and others. This kind of neural nets was applied mainly to different features extraction i.e. edges, ridges, maxima, extrema and many others that can be defined with the use of classic d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌| 措勤县| 贵州省| 安化县| 梧州市| 贺兰县| 宣汉县| 庐江县| 无锡市| 新民市| 浏阳市| 璧山县| 河津市| 五莲县| 略阳县| 湖州市| 凯里市| 新源县| 原阳县| 榕江县| 西林县| 桂平市| 周宁县| 灌阳县| 东兰县| 德庆县| 万年县| 沈丘县| 隆昌县| 岳阳市| 南昌市| 藁城市| 门源| 河北区| 陕西省| 湘阴县| 格尔木市| 汝城县| 伊通| 彭泽县| 迭部县|