找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 16th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復(fù)制鏈接]
樓主: Gratification
21#
發(fā)表于 2025-3-25 06:38:38 | 只看該作者
https://doi.org/10.1007/978-1-4302-1050-4ness. Proposed DCT method is used to reduce the size of system which results in faster processing with limited and controlled precision lost. Proposed method is compared to other ones like Fuzzy Systems, Neural Networks, Support Vector Machines, etc. to investigate the ability to solve sample proble
22#
發(fā)表于 2025-3-25 09:21:13 | 只看該作者
23#
發(fā)表于 2025-3-25 15:07:33 | 只看該作者
Geometric Structures as Design Approach,onen learning rule is used with random parameters providing different neuron locations. Any new neuron configuration allows us to obtain a new ETSP solution. This new approach to exploring the solution space of the ETSP is easy to implement and suitable for relatively large ETSP problems. Furthermor
24#
發(fā)表于 2025-3-25 17:49:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:07 | 只看該作者
26#
發(fā)表于 2025-3-26 02:51:46 | 只看該作者
Author Profiling with Classification Restricted Boltzmann Machinesfiling framework with no need for handcrafted features and only minor use of text preprocessing and feature engineering. The classifier achieves competitive results when evaluated with the PAN-AP-13 corpus: 36.59% joint accuracy, 57.83% gender accuracy and 59.17% age accuracy. We also examine the re
27#
發(fā)表于 2025-3-26 07:18:44 | 只看該作者
28#
發(fā)表于 2025-3-26 10:07:28 | 只看該作者
Parallel Levenberg-Marquardt Algorithm Without Error Backpropagationhich will also work for MLP but some cells will stay empty. This approach is based on a very interesting idea of learning neural networks without error backpropagation. The presented architecture is based on completely new parallel structures to significantly reduce a very high computational load of
29#
發(fā)表于 2025-3-26 14:09:19 | 只看該作者
Spectral Analysis of CNN for Tomato Disease Identificationresults generated by a specific network without considering how the internal part of the network itself has generated those results. The visualization of the activations and features of the neurons generated by the network can help to determine the best network architecture for our proposed idea. By
30#
發(fā)表于 2025-3-26 20:14:13 | 只看該作者
From Homogeneous Network to Neural Nets with Fractional Derivative Mechanismuse of calculus of finite differences proposed by Dudek-Dyduch E. and then developed jointly with Tadeusiewicz R. and others. This kind of neural nets was applied mainly to different features extraction i.e. edges, ridges, maxima, extrema and many others that can be defined with the use of classic d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五河县| 荃湾区| 鄂尔多斯市| 三门县| 蒙自县| 永城市| 独山县| 澎湖县| 平乐县| 共和县| 万宁市| 观塘区| 英吉沙县| 吴堡县| 元谋县| 怀化市| 巫溪县| 信阳市| 东乡县| 乌拉特前旗| 五常市| 延边| 察雅县| 德化县| 海晏县| 柘荣县| 沙湾县| 云安县| 铜陵市| 文山县| 灵璧县| 陕西省| 台南县| 木兰县| 霞浦县| 临沭县| 贵南县| 嵩明县| 旺苍县| 尖扎县| 安康市|