找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 9th Conference, AINL Andrey Filchenkov,Janne Kauttonen,Lidia Pivovarova Conference proceeding

[復(fù)制鏈接]
樓主: choleric
41#
發(fā)表于 2025-3-28 18:01:13 | 只看該作者
42#
發(fā)表于 2025-3-28 22:39:08 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:43 | 只看該作者
44#
發(fā)表于 2025-3-29 03:22:45 | 只看該作者
https://doi.org/10.1007/978-3-662-06318-7plain that a generative model can improve accuracy and reduce the number of iteration steps for PageRank SSL. Moreover, we show that our framework outperforms the best graph-based SSL algorithms on four public citation graph data sets and improves the interpretability of classification results.
45#
發(fā)表于 2025-3-29 08:17:29 | 只看該作者
46#
發(fā)表于 2025-3-29 11:33:27 | 只看該作者
Advances of Transformer-Based Models for News Headline Generation,s on the RIA and Lenta datasets of Russian news. BertSumAbs increases ROUGE on average by 2.9 and 2.0 points respectively over previous best score achieved by Phrase-Based Attentional Transformer and CopyNet.
47#
發(fā)表于 2025-3-29 16:05:11 | 只看該作者
An Explanation Method for Black-Box Machine Learning Survival Models Using the Chebyshev Distance,termining important features and for explaining the black-box model prediction. Moreover, SurvLIME-Inf outperforms SurvLIME when the training set is very small. Numerical experiments with synthetic and real datasets demonstrate the SurvLIME-Inf efficiency.
48#
發(fā)表于 2025-3-29 22:12:53 | 只看該作者
Unsupervised Neural Aspect Extraction with Related Terms,demonstrate the effectiveness on the real-world dataset. We apply a special loss aimed to improve the quality of multi-aspect extraction. The experimental study demonstrates, what with this loss we increase the precision not only on this joint setting but also on aspect prediction only.
49#
發(fā)表于 2025-3-30 00:23:24 | 只看該作者
50#
發(fā)表于 2025-3-30 05:14:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
边坝县| 西和县| 化州市| 高唐县| 沂水县| 华容县| 巴马| 建始县| 嘉义市| 林口县| 浦东新区| 沽源县| 株洲县| 同心县| 南丰县| 平度市| 望都县| 长宁县| 申扎县| 互助| 凌海市| 龙州县| 宣武区| 台安县| 丹江口市| 武邑县| 姚安县| 太康县| 河津市| 达孜县| 汽车| 宣汉县| 鲁甸县| 奈曼旗| 荔浦县| 班玛县| 宿迁市| 东山县| 信阳市| 富裕县| 宁国市|