找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan ?i?ka Conference proceedings 2018

[復(fù)制鏈接]
樓主: 巡洋
21#
發(fā)表于 2025-3-25 05:56:04 | 只看該作者
22#
發(fā)表于 2025-3-25 10:40:14 | 只看該作者
Andrey Filchenkov,Lidia Pivovarova,Jan ?i?kaIncludes supplementary material:
23#
發(fā)表于 2025-3-25 14:07:51 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/b/image/162256.jpg
24#
發(fā)表于 2025-3-25 17:14:18 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:03 | 只看該作者
978-3-319-71745-6Springer International Publishing AG 2018
26#
發(fā)表于 2025-3-26 01:40:13 | 只看該作者
Semantic Feature Aggregation for Gender Identification in Russian Facebook Russian. We collect Facebook posts of Russian-speaking users and apply them as a dataset for two topic modelling techniques and a distributional clustering approach. The output of the algorithms is applied as a feature aggregation method in a task of gender classification based on a smaller Faceboo
27#
發(fā)表于 2025-3-26 07:06:34 | 只看該作者
Using Linguistic Activity in Social Networks to Predict and Interpret Dark Psychological Traitsanging from psychology to marketing, but there are very few works of this kind on Russian-speaking samples. We use Latent Dirichlet Allocation on the Facebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the
28#
發(fā)表于 2025-3-26 12:13:06 | 只看該作者
29#
發(fā)表于 2025-3-26 14:53:53 | 只看該作者
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemsspeech addressed to real humans. In this work, several modalities were analyzed, and acoustic data has been chosen as the main modality by reason of the most flexible usability in modern SDSs. To resolve the problem of addressee detection, deep learning methods such as fully-connected neural network
30#
發(fā)表于 2025-3-26 17:36:53 | 只看該作者
Deep Neural Networks in Russian Speech Recognitionts. We propose applying various DNNs in automatic recognition of Russian continuous speech. We used different neural network models such as Convolutional Neural Networks (CNNs), modifications of Long short-term memory?(LSTM), Residual Networks and Recurrent Convolutional Networks (RCNNs). The presen
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 东城区| 田东县| 宁海县| 安康市| 云霄县| 淮安市| 新丰县| 隆安县| 苍南县| 青岛市| 开鲁县| 乌兰县| 昆明市| 通山县| 阳曲县| 阳山县| 巴林左旗| 搜索| 开平市| 奈曼旗| 肥城市| 新晃| 方城县| 五华县| 射阳县| 中江县| 清水县| 吴桥县| 宁德市| 南江县| 苗栗县| 宣城市| 桂林市| 普定县| 沈阳市| 台前县| 天柱县| 瑞安市| 芦溪县| 凌云县|