找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Machine Learning for Healthcare; Vol. 1: Image and Da Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain Book 2023 Th

[復制鏈接]
查看: 50572|回復: 50
樓主
發(fā)表于 2025-3-21 20:01:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence and Machine Learning for Healthcare
期刊簡稱Vol. 1: Image and Da
影響因子2023Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/163/162240/162240.mp4
發(fā)行地址Presents a sample of recent advances in the theory and applications of artificial intelligence for aging populations.Focuses on assisting aging populations using the recently evolved artificial intell
學科分類Intelligent Systems Reference Library
圖書封面Titlebook: Artificial Intelligence and Machine Learning for Healthcare; Vol. 1: Image and Da Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain Book 2023 Th
影響因子.Artificial intelligence (AI) and machine learning (ML) have transformed many standard and conventional methods in undertaking health and well-being issues of humans.? AL/ML-based systems and tools play a critical role in this digital and big data era to address a variety of medical and healthcare problems,?improving treatments and quality of care for patients.?.This edition on AI and ML for healthcare consists of two volumes.? The first presents selected AI and ML studies on medical imaging and healthcare data analytics, while the second unveils emerging methodologies and trends in AI and ML for delivering better medical treatments and healthcare services in the future..In this first volume, progresses in AI and ML technologies for medical image, video, and signal processing as well as health information and data analytics are presented.? These selected studies offer readers theoretical and practical knowledge and ideas pertaining to recent advances in AI and ML for effective and efficient image and data analytics, leading to state-of-the-art AI and ML technologies for advancing the healthcare sector..
Pindex Book 2023
The information of publication is updating

書目名稱Artificial Intelligence and Machine Learning for Healthcare影響因子(影響力)




書目名稱Artificial Intelligence and Machine Learning for Healthcare影響因子(影響力)學科排名




書目名稱Artificial Intelligence and Machine Learning for Healthcare網絡公開度




書目名稱Artificial Intelligence and Machine Learning for Healthcare網絡公開度學科排名




書目名稱Artificial Intelligence and Machine Learning for Healthcare被引頻次




書目名稱Artificial Intelligence and Machine Learning for Healthcare被引頻次學科排名




書目名稱Artificial Intelligence and Machine Learning for Healthcare年度引用




書目名稱Artificial Intelligence and Machine Learning for Healthcare年度引用學科排名




書目名稱Artificial Intelligence and Machine Learning for Healthcare讀者反饋




書目名稱Artificial Intelligence and Machine Learning for Healthcare讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:58:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:31:25 | 只看該作者
地板
發(fā)表于 2025-3-22 08:34:46 | 只看該作者
1868-4394 ing populations using the recently evolved artificial intell.Artificial intelligence (AI) and machine learning (ML) have transformed many standard and conventional methods in undertaking health and well-being issues of humans.? AL/ML-based systems and tools play a critical role in this digital and b
5#
發(fā)表于 2025-3-22 11:10:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:26 | 只看該作者
Radiomics: Approach to Precision Medicine,c in recent years. Large-scale molecular-biology-level information, such as genome, proteome, and metabolome, is collected from patients for analyzing biomarkers for subpopulation of a particular disease. This is import for the targeted therapy, which is expected to be more effective and less harmfu
7#
發(fā)表于 2025-3-22 18:19:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:55:33 | 只看該作者
,Unsupervised Domain Adaptation Approach for?Liver Tumor Detection in?Multi-phase CT Images,ely used in various medical applications. Deep learning-based AI systems require a large amount of training data for model learning. However, acquiring sufficient training data with high-quality annotation is a major challenge in Healthcare. As a result, deep learning-based models face a lack of ann
9#
發(fā)表于 2025-3-23 01:56:20 | 只看該作者
10#
發(fā)表于 2025-3-23 05:36:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 21:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
周口市| 蓝田县| 谢通门县| 南开区| 建湖县| 乃东县| 陵水| 博兴县| 六安市| 无棣县| 高淳县| 米林县| 施秉县| 普兰县| 江孜县| 金昌市| 连州市| 宝清县| 云浮市| 茌平县| 汉源县| 兴宁市| 岑巩县| 嘉义市| 个旧市| 四平市| 潼南县| 上杭县| 南华县| 海盐县| 高密市| 新龙县| 九龙县| 商洛市| 浙江省| 晋中市| 兴安盟| 临桂县| 南华县| 麻城市| 泾阳县|