找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Industrial Applications; Algorithms, Techniqu Tawfik Masrour,Hassan Ramchoun,Mohamed Hosni Conference proceedin

[復(fù)制鏈接]
樓主: 相似
31#
發(fā)表于 2025-3-26 21:59:24 | 只看該作者
32#
發(fā)表于 2025-3-27 01:56:21 | 只看該作者
33#
發(fā)表于 2025-3-27 08:33:44 | 只看該作者
34#
發(fā)表于 2025-3-27 11:03:30 | 只看該作者
The Impact of Systolic Blood Pressure Level and Comparative Study for Predicting Cardiovascular Dis-field where Data Mining has contributed to automate the diagnosis and sometimes may be applied in the treatment stage of the disease. This paper aims to define the efficient classifier medical decision support system compared to four classification algorithms (K-Nearest Neighbors, Support Vector Ma
35#
發(fā)表于 2025-3-27 13:52:20 | 只看該作者
36#
發(fā)表于 2025-3-27 21:12:40 | 只看該作者
A Multi-Agent System for the Optimization of Medical Waste Management,sis, as Medical Waste (MW) can be a vector of virus transmission if the process is not properly controlled. This fact calls into question the current models of MWM, especially in developing countries where in the majority of cases the MWM is operated in a hazardous manner, representing a real danger
37#
發(fā)表于 2025-3-27 22:26:40 | 只看該作者
,A Relaxed Variant of?Distributed Q-Learning Algorithm for?Cooperative Matrix Games, the presence of the stochasticity problem due to the over-estimation of action values. In this article, we present a new relaxation of the Distributed Q-learning by introducing a new update rule for the Q-function of each agent. We discuss the existing literature, then compare our algorithm with di
38#
發(fā)表于 2025-3-28 03:43:45 | 只看該作者
Remote Sensing Image Super-Resolution Using Deep Convolutional Neural Networks and Autoencoder,lationship between low-resolution images and high-resolution ones. This paper explores deep convolutional auto-encoder-based super-resolution, which includes one auto-encoder unit with several convolutional blocks in both the encoding and the decoding sub-units. In this study, we used RGB slices com
39#
發(fā)表于 2025-3-28 08:18:20 | 只看該作者
Part of Speech Tagging of Amazigh Language as a Very Low-Resourced Language: Particularities and ChOS tagging is a crucial step before every natural language processing application (syn tactic analysis, machine translation, autocorrection….) because the performance of each application depends, inter alia, on the performance of the used POS tagging. Thus, in order to realize an efficient POS tagge
40#
發(fā)表于 2025-3-28 14:24:57 | 只看該作者
,Learning Sparse Fully Connected Layers in?Convolutional Neural Networks,rameters, which restricts their utilization in platform-limited devices. Searching for an appropriate and simple convolutional neural network architecture with an optimal number of parameters is still a challenging problem. In fact, in many well-known convolutional neural networks like LeNet, AlexNe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莆田市| 济南市| 三原县| 克什克腾旗| 台江县| 油尖旺区| 化州市| 聂拉木县| 许昌市| 张掖市| 当阳市| 花莲市| 宿松县| 安多县| 敦煌市| 新余市| 北京市| 原平市| 大兴区| 榕江县| 扶余县| 廉江市| 富宁县| 峨山| 灵石县| 古田县| 綦江县| 资中县| 潼关县| 新津县| 昌宁县| 广元市| 三穗县| 大冶市| 扶沟县| 无锡市| 万荣县| 丹凤县| 丰台区| 南木林县| 习水县|