找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Industrial Applications; Algorithms, Techniqu Tawfik Masrour,Hassan Ramchoun,Mohamed Hosni Conference proceedin

[復(fù)制鏈接]
樓主: 相似
31#
發(fā)表于 2025-3-26 21:59:24 | 只看該作者
32#
發(fā)表于 2025-3-27 01:56:21 | 只看該作者
33#
發(fā)表于 2025-3-27 08:33:44 | 只看該作者
34#
發(fā)表于 2025-3-27 11:03:30 | 只看該作者
The Impact of Systolic Blood Pressure Level and Comparative Study for Predicting Cardiovascular Dis-field where Data Mining has contributed to automate the diagnosis and sometimes may be applied in the treatment stage of the disease. This paper aims to define the efficient classifier medical decision support system compared to four classification algorithms (K-Nearest Neighbors, Support Vector Ma
35#
發(fā)表于 2025-3-27 13:52:20 | 只看該作者
36#
發(fā)表于 2025-3-27 21:12:40 | 只看該作者
A Multi-Agent System for the Optimization of Medical Waste Management,sis, as Medical Waste (MW) can be a vector of virus transmission if the process is not properly controlled. This fact calls into question the current models of MWM, especially in developing countries where in the majority of cases the MWM is operated in a hazardous manner, representing a real danger
37#
發(fā)表于 2025-3-27 22:26:40 | 只看該作者
,A Relaxed Variant of?Distributed Q-Learning Algorithm for?Cooperative Matrix Games, the presence of the stochasticity problem due to the over-estimation of action values. In this article, we present a new relaxation of the Distributed Q-learning by introducing a new update rule for the Q-function of each agent. We discuss the existing literature, then compare our algorithm with di
38#
發(fā)表于 2025-3-28 03:43:45 | 只看該作者
Remote Sensing Image Super-Resolution Using Deep Convolutional Neural Networks and Autoencoder,lationship between low-resolution images and high-resolution ones. This paper explores deep convolutional auto-encoder-based super-resolution, which includes one auto-encoder unit with several convolutional blocks in both the encoding and the decoding sub-units. In this study, we used RGB slices com
39#
發(fā)表于 2025-3-28 08:18:20 | 只看該作者
Part of Speech Tagging of Amazigh Language as a Very Low-Resourced Language: Particularities and ChOS tagging is a crucial step before every natural language processing application (syn tactic analysis, machine translation, autocorrection….) because the performance of each application depends, inter alia, on the performance of the used POS tagging. Thus, in order to realize an efficient POS tagge
40#
發(fā)表于 2025-3-28 14:24:57 | 只看該作者
,Learning Sparse Fully Connected Layers in?Convolutional Neural Networks,rameters, which restricts their utilization in platform-limited devices. Searching for an appropriate and simple convolutional neural network architecture with an optimal number of parameters is still a challenging problem. In fact, in many well-known convolutional neural networks like LeNet, AlexNe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
樟树市| 平潭县| 乳山市| 寻乌县| 隆林| 开阳县| 文成县| 双牌县| 贺兰县| 牟定县| 巴马| 湾仔区| 绥中县| 崇阳县| 宿迁市| 本溪市| 枣强县| 靖宇县| 商都县| 张家川| 西乌| 个旧市| 澄迈县| 望江县| 喀什市| 沙洋县| 元氏县| 乐至县| 阿尔山市| 台北市| 云和县| 舒城县| 崇仁县| 武安市| 观塘区| 东海县| 凉城县| 双城市| 靖江市| 吴忠市| 石泉县|