找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Data Mining in Healthcare; Malek Masmoudi,Bassem Jarboui,Patrick Siarry Book 2021 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 18823|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:18:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence and Data Mining in Healthcare
影響因子2023Malek Masmoudi,Bassem Jarboui,Patrick Siarry
視頻videohttp://file.papertrans.cn/163/162189/162189.mp4
發(fā)行地址Presents recent work on healthcare management and engineering using AI and data mining techniques.Valuable for researchers and postgraduate students in computer science, information technology, indust
圖書封面Titlebook: Artificial Intelligence and Data Mining in Healthcare;  Malek Masmoudi,Bassem Jarboui,Patrick Siarry Book 2021 Springer Nature Switzerland
影響因子.This book presents recent work on healthcare management and engineering using artificial intelligence and data mining techniques. Specific topics covered in the contributed chapters include predictive mining, decision support, capacity management, patient flow optimization, image compression, data clustering, and feature selection..The content will be valuable for researchers and postgraduate students in computer science, information technology, industrial engineering, and applied mathematics..
Pindex Book 2021
The information of publication is updating

書目名稱Artificial Intelligence and Data Mining in Healthcare影響因子(影響力)




書目名稱Artificial Intelligence and Data Mining in Healthcare影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence and Data Mining in Healthcare網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence and Data Mining in Healthcare網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence and Data Mining in Healthcare被引頻次




書目名稱Artificial Intelligence and Data Mining in Healthcare被引頻次學(xué)科排名




書目名稱Artificial Intelligence and Data Mining in Healthcare年度引用




書目名稱Artificial Intelligence and Data Mining in Healthcare年度引用學(xué)科排名




書目名稱Artificial Intelligence and Data Mining in Healthcare讀者反饋




書目名稱Artificial Intelligence and Data Mining in Healthcare讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:09 | 只看該作者
Lattice Images and Structure Imagesnt of hours awarded to a team of surgeons or a given specialty, the duration of shifts, and the availability of a specific operating room for a specific team. Simulation tests on a typical case using real data are performed by both methods. The results allow us to conclude as to the superiority of t
板凳
發(fā)表于 2025-3-22 04:07:00 | 只看該作者
地板
發(fā)表于 2025-3-22 06:12:23 | 只看該作者
5#
發(fā)表于 2025-3-22 10:10:09 | 只看該作者
https://doi.org/10.1007/978-3-031-67260-6aging diseases, providing better care which leads to having better outcomes including elimination of unnecessary costs and increasing patient satisfaction..In this work, we focus on one of the main clustering methods of machine learning approaches, namely mixture models. These capable techniques hav
6#
發(fā)表于 2025-3-22 14:55:19 | 只看該作者
7#
發(fā)表于 2025-3-22 18:02:43 | 只看該作者
8#
發(fā)表于 2025-3-23 01:03:42 | 只看該作者
Optimized Medical Image Compression for Telemedicine Applications,and normalized correlation coefficient (NCC) are quantitative measures used to evaluate the performance of the proposed algorithm and well-known existing medical image compression methods. The results showed that the quality of the reconstructed images using the proposed algorithm is much better tha
9#
發(fā)表于 2025-3-23 04:58:02 | 只看該作者
Online Variational Learning Using Finite Generalized Inverted Dirichlet Mixture Model with Feature rning of finite generalized inverted Dirichlet (GID) mixture model for clustering medical images data by simultaneously using feature selection and image segmentation. The model allows one to adjust the mixture model parameters, number of components and features weights to tackle the challenge of ov
10#
發(fā)表于 2025-3-23 06:32:04 | 只看該作者
Entropy-Based Variational Inference for Semi-Bounded Data Clustering in Medical Applications,aging diseases, providing better care which leads to having better outcomes including elimination of unnecessary costs and increasing patient satisfaction..In this work, we focus on one of the main clustering methods of machine learning approaches, namely mixture models. These capable techniques hav
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳山县| 固镇县| 邵武市| 项城市| 新邵县| 萨嘎县| 鸡东县| 天等县| 定结县| 阳春市| 西峡县| 泸定县| 湘潭县| 莱州市| 达孜县| 炎陵县| 松桃| 岐山县| 得荣县| 稷山县| 武威市| 惠州市| 桐庐县| 江达县| 浑源县| 乃东县| 汪清县| 从化市| 甘谷县| 沈阳市| 漳州市| 潜江市| 思南县| 东光县| 高碑店市| 龙胜| 左云县| 天水市| 金秀| 个旧市| 兴义市|