找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence XXXVII; 40th SGAI Internatio Max Bramer,Richard Ellis Conference proceedings 2020 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
查看: 50461|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:43:57 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence XXXVII
期刊簡稱40th SGAI Internatio
影響因子2023Max Bramer,Richard Ellis
視頻videohttp://file.papertrans.cn/163/162163/162163.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence XXXVII; 40th SGAI Internatio Max Bramer,Richard Ellis Conference proceedings 2020 Springer Nature Switzerland AG 20
影響因子This book constitutes the proceedings of the 40th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, AI 2020, which was supposed to be held in Cambridge, UK, in December 2020. The conference was held virtually due to the COVID-19 pandemic..The 23 full papers and 9 short papers presented in this volume were carefully reviewed and selected from 44 submissions. The volume includes technical papers presenting new and innovative developments in the field as well as application papers presenting innovative applications of AI techniques in a number of subject domains. The papers are organized in the following topical sections: neural nets and knowledge management; machine learning; industrial applications; advances in applied AI; and medical and legal applications..
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Artificial Intelligence XXXVII影響因子(影響力)




書目名稱Artificial Intelligence XXXVII影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence XXXVII網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence XXXVII網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence XXXVII被引頻次




書目名稱Artificial Intelligence XXXVII被引頻次學(xué)科排名




書目名稱Artificial Intelligence XXXVII年度引用




書目名稱Artificial Intelligence XXXVII年度引用學(xué)科排名




書目名稱Artificial Intelligence XXXVII讀者反饋




書目名稱Artificial Intelligence XXXVII讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:33 | 只看該作者
地板
發(fā)表于 2025-3-22 06:22:08 | 只看該作者
https://doi.org/10.1007/978-981-97-4962-1 trade-off between accuracy and interpretability. Fuzzy Cognitive Maps (FCMs) and their extensions are recurrent neural networks that have been partially exploited towards fulfilling such a goal. However, the interpretability of these neural systems has been confined to the fact that both neural con
5#
發(fā)表于 2025-3-22 12:06:29 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:40 | 只看該作者
https://doi.org/10.1007/978-981-97-4962-1Belief Revision add/delete axioms or delete/add preconditions to rules, respectively. Reformation repairs them by changing the . of the faulty theory. Unfortunately, the ABC system overproduces repair suggestions. Our aim is to prune these suggestions to leave only a Pareto front of the optimal ones
7#
發(fā)表于 2025-3-22 19:02:36 | 只看該作者
8#
發(fā)表于 2025-3-23 00:49:32 | 只看該作者
https://doi.org/10.1007/978-981-97-4962-1prohibitive when tasked with creating models that are sensitive to personal nuances in human movement, explicitly present when performing exercises and when it is infeasible to collect training data to cover the whole target population. Accordingly, learning personalised models with few data remains
9#
發(fā)表于 2025-3-23 02:36:51 | 只看該作者
https://doi.org/10.1007/978-981-97-4962-1ppens through trial and error using explorative methods, such as .-greedy. There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines. Model-based RL learns a model of the environment for learning the policy while model-free approac
10#
發(fā)表于 2025-3-23 07:10:36 | 只看該作者
https://doi.org/10.1007/978-981-97-4962-1energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永年县| 兰考县| 灵石县| 新郑市| 湘西| 宁都县| 锡林浩特市| 普定县| 和龙市| 宜章县| 通许县| 固镇县| 天台县| 安庆市| 无极县| 耿马| 扶风县| 万山特区| 鹤庆县| 金堂县| 来凤县| 铜陵市| 嵩明县| 洮南市| 聂拉木县| 全州县| 宣化县| 罗江县| 孟连| 申扎县| 佳木斯市| 乌鲁木齐县| 洞口县| 突泉县| 衡东县| 民权县| 新津县| 成都市| 江门市| 岐山县| 富顺县|