找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence Techniques for a Scalable Energy Transition; Advanced Methods, Di Moamar Sayed-Mouchaweh Book 2020 Springer Nature

[復制鏈接]
查看: 9533|回復: 49
樓主
發(fā)表于 2025-3-21 19:50:51 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence Techniques for a Scalable Energy Transition
期刊簡稱Advanced Methods, Di
影響因子2023Moamar Sayed-Mouchaweh
視頻videohttp://file.papertrans.cn/163/162149/162149.mp4
發(fā)行地址Uses examples and applications to facilitate the understanding of AI techniques for scalable energy transitions.Includes examples, problems, and techniques in order to increase transparency and unders
圖書封面Titlebook: Artificial Intelligence Techniques for a Scalable Energy Transition; Advanced Methods, Di Moamar Sayed-Mouchaweh Book 2020 Springer Nature
影響因子This book presents research in artificial techniques using intelligence for energy transition, outlining several applications including production systems, energy production, energy distribution, energy management, renewable energy production, cyber security, industry 4.0 and internet of things etc. The book goes beyond standard application by placing a specific focus on the use of AI techniques to address the challenges related to the different applications and topics of energy transition. The contributions are classified according to the market and actor interactions (service providers, manufacturers, customers, integrators, utilities etc.), to the SG architecture model (physical layer, infrastructure layer, and business layer), to the digital twin of SG (business model, operational model, fault/transient model, and asset model), and to the application domain (demand side management, load monitoring, micro grids, energy consulting (residents, utilities), energy saving, dynamic pricing revenue management and smart meters, etc.)..
Pindex Book 2020
The information of publication is updating

書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition影響因子(影響力)




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition影響因子(影響力)學科排名




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition網絡公開度




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition網絡公開度學科排名




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition被引頻次




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition被引頻次學科排名




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition年度引用




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition年度引用學科排名




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition讀者反饋




書目名稱Artificial Intelligence Techniques for a Scalable Energy Transition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:57:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:18:06 | 只看該作者
Large-Scale Building Thermal Modeling Based on Artificial Neural Networks: Application to Smart Ener model developed and we also realize different factors analysis which may affect the energy consumption for optimization purposes. This leads in setting well the human interface to be sure that each user sticks to each advice in order to guarantee an efficient smart building energy management system
地板
發(fā)表于 2025-3-22 06:08:53 | 只看該作者
Automated Demand Side Management in Buildingse latest advances in artificial intelligence, offer a potential solution to this problem. However, these solutions are marred by data and computational requirements, as well as privacy concerns. Transfer learning has recently been shown to help avoid the requirement of copious amounts of data requir
5#
發(fā)表于 2025-3-22 12:25:31 | 只看該作者
6#
發(fā)表于 2025-3-22 15:46:16 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:33 | 只看該作者
Using Model-Based Reasoning for Self-Adaptive Control of Smart Battery Systemsphysical model for fault detection and a logical model for computing the root cause of the observed failure. The intention behind the chapter is to provide all necessary details of the methods allowing to adapt the methods to implement similar smart adaptive systems.
9#
發(fā)表于 2025-3-23 04:01:34 | 只看該作者
Data-Driven Predictive Flexibility Modeling of Distributed Energy Resourcestly unknown and uncertain, and (3) lack of available behind-the-meter sensing and measurements (partly due privacy concerns). As such, data-driven deep learning based frameworks have been proposed in this work to identify aggregated predictive flexibility models of a collection of DERs, using front-
10#
發(fā)表于 2025-3-23 05:42:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-11-2 09:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁化县| 寿阳县| 辛集市| 舞阳县| 舟曲县| 海原县| 永年县| 吕梁市| 桓台县| 甘泉县| 晋江市| 秦皇岛市| 临漳县| 丘北县| 新丰县| 建阳市| 大宁县| 宣汉县| 武义县| 寿阳县| 阳信县| 昌图县| 松潘县| 临城县| 商水县| 秀山| 义乌市| 保靖县| 渭南市| 固安县| 青阳县| 玉林市| 赤水市| 张家口市| 四平市| 屯门区| 南涧| 庄河市| 疏附县| 霍城县| 梓潼县|