找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence Methods and Tools for Systems Biology; Werner Dubitzky,Francisco Azuaje Book 2004 Springer Science+Business Media

[復(fù)制鏈接]
查看: 30057|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:22:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence Methods and Tools for Systems Biology
影響因子2023Werner Dubitzky,Francisco Azuaje
視頻videohttp://file.papertrans.cn/163/162128/162128.mp4
學(xué)科分類Computational Biology
圖書封面Titlebook: Artificial Intelligence Methods and Tools for Systems Biology;  Werner Dubitzky,Francisco Azuaje Book 2004 Springer Science+Business Media
影響因子.This book provides simultaneously a design blueprint, user guide, research agenda, and communication platform for current and future developments in artificial intelligence (AI) approaches to systems biology. It places an emphasis on the molecular dimension of life phenomena and in one chapter on anatomical and functional modeling of the brain...As design blueprint, the book is intended for scientists and other professionals tasked with developing and using AI technologies in the context of life sciences research. As a user guide, this volume addresses the requirements of researchers to gain a basic understanding of key AI methodologies for life sciences research. Its emphasis is not on an intricate mathematical treatment of the presented AI methodologies. Instead, it aims at providing the users with a clear understanding and practical know-how of the methods. As a research agenda, the book is intended for computer and life science students, teachers, researchers, and managers who want to understand the state of the art of the presented methodologies and the areas in which gaps in our knowledge demand further research and development. Our aim was to maintain the readability and ac
Pindex Book 2004
The information of publication is updating

書目名稱Artificial Intelligence Methods and Tools for Systems Biology影響因子(影響力)




書目名稱Artificial Intelligence Methods and Tools for Systems Biology影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence Methods and Tools for Systems Biology網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence Methods and Tools for Systems Biology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence Methods and Tools for Systems Biology被引頻次




書目名稱Artificial Intelligence Methods and Tools for Systems Biology被引頻次學(xué)科排名




書目名稱Artificial Intelligence Methods and Tools for Systems Biology年度引用




書目名稱Artificial Intelligence Methods and Tools for Systems Biology年度引用學(xué)科排名




書目名稱Artificial Intelligence Methods and Tools for Systems Biology讀者反饋




書目名稱Artificial Intelligence Methods and Tools for Systems Biology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:02 | 只看該作者
QSAR Modeling of Mutagenicity on Non-Congeneric Sets of Organic Compounds,ods from artificial intelligence, quantum mechanics, statistical methods by analyzing relationships between the mutagenic activity of compounds and their structure. The overview is given on the use of artificial intelligence methods for the estimation of mutagenicity. The focus is on ., the selectio
板凳
發(fā)表于 2025-3-22 02:25:33 | 只看該作者
Characterizing Gene Expression Time Series using a Hidden Markov Model,terizing the developmental processes within the cell. By explicitly modelling the time dependent aspects of these data using a novel form of the HMM, each stage of cell development can be depicted. In this model, the hitherto unknown development process that manifests itself as changes in gene expre
地板
發(fā)表于 2025-3-22 05:00:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:19:37 | 只看該作者
A Data-Driven, Flexible Machine Learning Strategy for the Classification of Biomedical Data,es, they also present significant challenges for analysis, classification and interpretation. These challenges include sample sparsity, high-dimensional feature spaces, and noise/artifact signatures. Since a dataindependent ‘universal’ classifier does not exist, a classification strategy is needed,
6#
發(fā)表于 2025-3-22 13:54:02 | 只看該作者
Cooperative Metaheuristics for Exploring Proteomic Data,pproximated solutions in a reasonable time. Cooperative metaheuristics are a sub-set of metaheuristics, which implies a parallel exploration of the search space by several entities with information exchange between them. Several improvements in the field of metaheuristics are given. A hierarchical a
7#
發(fā)表于 2025-3-22 20:14:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:29:34 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:31 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂平县| 杭州市| 青川县| 木里| 怀宁县| 独山县| 穆棱市| 辉县市| 扶风县| 九龙城区| 邢台市| 福鼎市| 德州市| 顺昌县| 泰安市| 胶州市| 友谊县| 石台县| 兰溪市| 阿拉尔市| 黔西县| 孝昌县| 七台河市| 韶关市| 永年县| 云和县| 贞丰县| 乌拉特后旗| 合阳县| 昌邑市| 通城县| 长寿区| 舟曲县| 商丘市| 岑巩县| 疏附县| 如皋市| 永宁县| 天镇县| 明光市| 六安市|