找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence; Second CCF Internati Kevin Knight,Changshui Zhang,Min-Ling Zhang Conference proceedings 2019 Springer Nature Singa

[復(fù)制鏈接]
查看: 32906|回復(fù): 57
樓主
發(fā)表于 2025-3-21 20:03:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence
期刊簡稱Second CCF Internati
影響因子2023Kevin Knight,Changshui Zhang,Min-Ling Zhang
視頻videohttp://file.papertrans.cn/163/162078/162078.mp4
學(xué)科分類Communications in Computer and Information Science
圖書封面Titlebook: Artificial Intelligence; Second CCF Internati Kevin Knight,Changshui Zhang,Min-Ling Zhang Conference proceedings 2019 Springer Nature Singa
影響因子.This book constitutes the refereed proceedings of the Second CCF International Conference on Artificial Intelligence, CCF-ICAI 2019, held in Xuzhou, China in August, 2019. ..The 23 papers presented were carefully reviewed and selected from 97 submissions. The papers are organized in topical sections on ?deep learning, image and video processing, NLP and recommender system, machine learning algorithms, and AI applications..
Pindex Conference proceedings 2019
The information of publication is updating

書目名稱Artificial Intelligence影響因子(影響力)




書目名稱Artificial Intelligence影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence被引頻次




書目名稱Artificial Intelligence被引頻次學(xué)科排名




書目名稱Artificial Intelligence年度引用




書目名稱Artificial Intelligence年度引用學(xué)科排名




書目名稱Artificial Intelligence讀者反饋




書目名稱Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:14 | 只看該作者
Image Recognition of Peanut Leaf Diseases Based on Capsule Networksase images by taking advantage of the capsule networks. Firstly, constructing the data set of the peanut leaf disease images and data enhancement was used to process the images. Secondly, this paper designed two types of capsule networks: modifying the parameters for the peanut leaf disease images a
板凳
發(fā)表于 2025-3-22 00:48:00 | 只看該作者
地板
發(fā)表于 2025-3-22 06:22:15 | 只看該作者
TCPModel: A Short-Term Traffic Congestion Prediction Model Based on Deep Learningerm traffic speed prediction model called .. Both models are based on a deep learning method Stacked Auto Encoder (.). By comparing the other traffic flow forecasting methods and average speed forecasting methods, the methods proposed by this paper have improved the accuracy rate. For traffic conges
5#
發(fā)表于 2025-3-22 11:18:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:47:52 | 只看該作者
The Methods for Reducing the Number of OOVs in Chinese-Uyghur NMT Systemnt test on low-frequency words from Chinese corpus after training and achieved an even more reduced OOV result of 98. The mass reduction of OOVs from 1.5 thousand to only a hundred signifies the effectiveness of the solutions in this study.
7#
發(fā)表于 2025-3-22 20:35:26 | 只看該作者
8#
發(fā)表于 2025-3-22 23:18:01 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:18 | 只看該作者
Developing Successful Oracle Applications,t scale classification maps and obtain a final road decision map. To validate the performance of the proposed method, we test our MSCNN based method and other state-of-the-art approaches on two challenging datasets of high-resolution images. Experiments show our method gets the best results both in
10#
發(fā)表于 2025-3-23 09:36:22 | 只看該作者
Developing Successful Oracle Applications,erm traffic speed prediction model called .. Both models are based on a deep learning method Stacked Auto Encoder (.). By comparing the other traffic flow forecasting methods and average speed forecasting methods, the methods proposed by this paper have improved the accuracy rate. For traffic conges
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸水县| 当涂县| 绥棱县| 天等县| 襄城县| 常山县| 威信县| 临猗县| 盐源县| 彰化县| 常德市| 乃东县| 哈密市| 鸡泽县| 乾安县| 台前县| 河东区| 英超| 石柱| 石河子市| 阳原县| 江孜县| 成都市| 梁山县| 巨鹿县| 阳城县| 新宾| 眉山市| 常州市| 玉树县| 德州市| 达孜县| 徐汇区| 临西县| 望奎县| 沈丘县| 荃湾区| 库伦旗| 额济纳旗| 淅川县| 长垣县|