找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence; Second CAAI Internat Lu Fang,Daniel Povey,Ruiping Wang Conference proceedings 2022 The Editor(s) (if applicable) a

[復(fù)制鏈接]
查看: 45566|回復(fù): 65
樓主
發(fā)表于 2025-3-21 16:55:48 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Intelligence
期刊簡稱Second CAAI Internat
影響因子2023Lu Fang,Daniel Povey,Ruiping Wang
視頻videohttp://file.papertrans.cn/163/162072/162072.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Intelligence; Second CAAI Internat Lu Fang,Daniel Povey,Ruiping Wang Conference proceedings 2022 The Editor(s) (if applicable) a
影響因子.This three-volume set LNCS 13604-13606 constitutes revised selected papers presented at the Second CAAI International Conference on Artificial Intelligence, held in?Beijing, China, in August 2022.?CICAI is a summit forum in the field of artificial intelligence and the 2022 forum was hosted by Chinese Association for Artificial Intelligence (CAAI). ..The 164 papers were thoroughly reviewed and selected from 521 submissions.?CICAI aims to establish a global platform for international academic exchange, promote advanced research in AI and its affiliated disciplines such as machine learning, computer vision, natural language, processing, and data mining, amongst others..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Artificial Intelligence影響因子(影響力)




書目名稱Artificial Intelligence影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence被引頻次




書目名稱Artificial Intelligence被引頻次學(xué)科排名




書目名稱Artificial Intelligence年度引用




書目名稱Artificial Intelligence年度引用學(xué)科排名




書目名稱Artificial Intelligence讀者反饋




書目名稱Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:19 | 只看該作者
Improving Adversarial Attacks with?Ensemble-Based Approaches known models, meanwhile, keeping a higher success rate on all original models. In addition, the experiment result illustrates that, for more challenging targeted attacks, our methods exhibit higher transferability than other state-of-the-art attacks.
板凳
發(fā)表于 2025-3-22 01:27:52 | 只看該作者
地板
發(fā)表于 2025-3-22 04:52:18 | 只看該作者
An Optical Satellite Controller Based on?Diffractive Deep Neural Networkconvert the light field at the output plane of DM module into electronic signals. Then, we trained the DM module to make the decoded electrical signals consistent with the desired optimal control commands. Therefore, when the light carrying input information and propagating through the well-trained
5#
發(fā)表于 2025-3-22 09:28:56 | 只看該作者
Incomplete Cigarette Code Recognition via?Unified SPA Features and?Graph Space Constraintsconstraints and calculate character spatial correlations and accurately estimates missing character landmarks. Finally, we employ the Hungarian algorithm to align recognition characters with estimated landmarks and fill missing characters with ‘*’ to preserve the complete semantic context, and produ
6#
發(fā)表于 2025-3-22 16:48:22 | 只看該作者
ETH-TT: A Novel Approach for?Detecting Ethereum Malicious Accountsas dataset for experiments. The results show that the ETH-TT method can achieve an F1-score of 95.4% with the cooperation of the XGBoost classifier, which is better than the detection method using only manual features.
7#
發(fā)表于 2025-3-22 19:44:07 | 只看該作者
Multi-objective Meta-return Reinforcement Learning for?Sequential Recommendationnt effect (i.e., CTR), leading to trade-offs during optimization. To address these challenges, we propose a Multi-Objective Meta-return Reinforcement Learning (.) framework for sequential recommendation, which consists of a . and a .. Specifically, the . is designed to adaptively capture the return
8#
發(fā)表于 2025-3-22 22:14:07 | 只看該作者
Purchase Pattern Based Anti-Fraud Framework in?Online E-Commerce Platform Using Graph Neural Networkveness of our framework, and the experimental results show that the DPP is able to capture more discriminative user patterns. Furthermore, GSR achieves the best performance compared to several state-of-the-art methods. Our method can be easily extended to other domains with the same problems as our
9#
發(fā)表于 2025-3-23 04:35:41 | 只看該作者
10#
發(fā)表于 2025-3-23 07:11:47 | 只看該作者
Blind Surveillance Image Quality Assessment via?Deep Neural Network Combined with?the?Visual Saliencd thus have a great impact on the overall quality of the SIs. Next, the convolutional neural network (CNN) is adopted to extract quality-aware features for the whole image and local region, which are then mapped into the global and local quality scores through the fully connected (FC) network respec
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金溪县| 玛曲县| 鄂州市| 工布江达县| 周口市| 聂拉木县| 赤城县| 柳州市| 壶关县| 溧阳市| 新野县| 酉阳| 永清县| 塔河县| 巴彦县| 新乡县| 株洲县| SHOW| 禄丰县| 商丘市| 德惠市| 无极县| 县级市| 纳雍县| 封丘县| 石河子市| 略阳县| 韶山市| 昌江| 华容县| 香格里拉县| 扶沟县| 理塘县| 扎兰屯市| 湘乡市| 博湖县| 龙江县| 集安市| 扶余县| 隆化县| 河北区|