找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Art Meets Mathematics in the Fourth Dimension; Stephen Leon Lipscomb Book 2014Latest edition Springer International Publishing Switzerland

[復(fù)制鏈接]
查看: 11483|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:07:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Art Meets Mathematics in the Fourth Dimension
影響因子2023Stephen Leon Lipscomb
視頻videohttp://file.papertrans.cn/162/161810/161810.mp4
發(fā)行地址Develops the concept of the hypersphere dimensions as it relates to art, architecture, and mathematics.Includes illustrations to support mathematical analyses.Discusses computer software that enables
圖書封面Titlebook: Art Meets Mathematics in the Fourth Dimension;  Stephen Leon Lipscomb Book 2014Latest edition Springer International Publishing Switzerland
影響因子To see objects that live in the fourth dimension we humans would need to add a fourth dimension to our three-dimensional vision. An example of such an object that lives in the fourth dimension is a hyper-sphere or “3-sphere.” The quest to imagine the elusive 3-sphere has deep historical roots: medieval poet Dante Alighieri used a 3-sphere to convey his allegorical vision of the Christian afterlife in his Divine Comedy. In 1917, Albert Einstein visualized the universe as a 3-sphere, describing this imagery as “the place where the reader’s imagination boggles. Nobody can imagine this thing.” Over time, however, understanding of the concept of a dimension evolved. By 2003, a researcher had successfully rendered into human vision the structure of a 4-web (think of an ever increasingly-dense spider’s web). In this text, Stephen Lipscomb takes his innovative dimension theory research a step further, using the 4-web to reveal a new partial image of a 3-sphere. Illustrations support the reader’s understanding of the mathematics behind this process. Lipscomb describes a computer program that can produce partial images of a 3-sphere and suggests methods of discerning other fourth-dimensional
Pindex Book 2014Latest edition
The information of publication is updating

書目名稱Art Meets Mathematics in the Fourth Dimension影響因子(影響力)




書目名稱Art Meets Mathematics in the Fourth Dimension影響因子(影響力)學(xué)科排名




書目名稱Art Meets Mathematics in the Fourth Dimension網(wǎng)絡(luò)公開度




書目名稱Art Meets Mathematics in the Fourth Dimension網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Art Meets Mathematics in the Fourth Dimension被引頻次




書目名稱Art Meets Mathematics in the Fourth Dimension被引頻次學(xué)科排名




書目名稱Art Meets Mathematics in the Fourth Dimension年度引用




書目名稱Art Meets Mathematics in the Fourth Dimension年度引用學(xué)科排名




書目名稱Art Meets Mathematics in the Fourth Dimension讀者反饋




書目名稱Art Meets Mathematics in the Fourth Dimension讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:18:36 | 只看該作者
Grundlagen der Corporate Governance joins them by “gluing their surfaces.” In 20th Century language, Dante constructed a three-sphere ..; and the three sphere .. turned out to be fundamental to what is commonly called “Einstein’s Universe”. All of these models involve . constructed inside universes of dimensions three and four.
地板
發(fā)表于 2025-3-22 05:45:56 | 只看該作者
hematical analyses.Discusses computer software that enables To see objects that live in the fourth dimension we humans would need to add a fourth dimension to our three-dimensional vision. An example of such an object that lives in the fourth dimension is a hyper-sphere or “3-sphere.” The quest to i
5#
發(fā)表于 2025-3-22 10:20:12 | 只看該作者
Problemstellung und Zielsetzung der Arbeit constructs the Empyrean as a mirror image of the classical Aristotle universe, and then “glues their 2-sphere boundaries” to form a 3-sphere. We essentially follow the article . by Mark Peterson, American Journal of Physics 47 (1979).
6#
發(fā)表于 2025-3-22 15:59:10 | 只看該作者
,Dante’s 3-Sphere Universe, constructs the Empyrean as a mirror image of the classical Aristotle universe, and then “glues their 2-sphere boundaries” to form a 3-sphere. We essentially follow the article . by Mark Peterson, American Journal of Physics 47 (1979).
7#
發(fā)表于 2025-3-22 20:25:39 | 只看該作者
8#
發(fā)表于 2025-3-22 22:13:21 | 只看該作者
9#
發(fā)表于 2025-3-23 04:41:48 | 只看該作者
10#
發(fā)表于 2025-3-23 06:39:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上思县| 湟中县| 龙泉市| 五原县| 承德县| 西和县| 淮南市| 依兰县| 海宁市| 兖州市| 罗田县| 淅川县| 皮山县| 太湖县| 明水县| 盐城市| 新乐市| 任丘市| 三原县| 西华县| 五寨县| 龙胜| 同心县| 泸水县| 静宁县| 瑞丽市| 新乡市| 鄂尔多斯市| 麟游县| 仙居县| 陆川县| 乐都县| 兴和县| 桦川县| 成都市| 黄骅市| 镶黄旗| 屯留县| 禄劝| 肇州县| 盐城市|