找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arrangements of Hyperplanes; Peter Orlik,Hiroaki Terao Book 1992 Springer-Verlag Berlin Heidelberg 1992 algebraic topology of manifolds.ge

[復(fù)制鏈接]
查看: 17554|回復(fù): 46
樓主
發(fā)表于 2025-3-21 20:06:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Arrangements of Hyperplanes
影響因子2023Peter Orlik,Hiroaki Terao
視頻videohttp://file.papertrans.cn/162/161755/161755.mp4
學(xué)科分類Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Arrangements of Hyperplanes;  Peter Orlik,Hiroaki Terao Book 1992 Springer-Verlag Berlin Heidelberg 1992 algebraic topology of manifolds.ge
影響因子An arrangement of hyperplanes is a finite collection ofcodimension one affine subspaces in a finite dimensionalvector space. Arrangements haveemerged independently asimportant objects in various fields of mathematics such ascombinatorics, braids, configuration spaces,representationtheory, reflection groups, singularity theory, and incomputer science and physics.This book is the first comprehensive study of the subject.It treats arrangements with methods fromcombinatorics,algebra, algebraic geometry, topology, and group actions.Itemphasizes general techniques which illuminate theconnections among the different aspects of the subject. Itsmain purpose is to lay thefoundations of the theory.Consequently, it is essentially self-contained and proofsare provided. Nevertheless, there are several newresultshere. In particular, many theorems that were previouslyknown only for central arrangements are proved here for thefirst time in completegenerality.The text provides the advanced graduate student entry intoavital and active area of research. The working mathematicianwill findthe book useful as a source of basic results ofthe theory, open problems,and a comprehensive bibliographyof the subj
Pindex Book 1992
The information of publication is updating

書目名稱Arrangements of Hyperplanes影響因子(影響力)




書目名稱Arrangements of Hyperplanes影響因子(影響力)學(xué)科排名




書目名稱Arrangements of Hyperplanes網(wǎng)絡(luò)公開度




書目名稱Arrangements of Hyperplanes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arrangements of Hyperplanes被引頻次




書目名稱Arrangements of Hyperplanes被引頻次學(xué)科排名




書目名稱Arrangements of Hyperplanes年度引用




書目名稱Arrangements of Hyperplanes年度引用學(xué)科排名




書目名稱Arrangements of Hyperplanes讀者反饋




書目名稱Arrangements of Hyperplanes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:52:50 | 只看該作者
地板
發(fā)表于 2025-3-22 05:16:00 | 只看該作者
Charles J. Cazeau,Stuart D. Scott Jr.ent of a complex arrangement, .(.). Call the complex arrangements . = (., .) and . = (.) ., or . if .(.) and .(.) are diffeomorphic, homeomorphic, or homotopy equivalent. It is natural to ask how these topological equivalence classes relate to the combinatorial equivalence classes defined earlier. F
5#
發(fā)表于 2025-3-22 11:58:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:54 | 只看該作者
Introduction:History and Scope of This Book, where .., .. are G-modules and the restrictions .., .. of . to .., .. are either the identity or unitary reflection groups. Let .. = (.(..),..), .. = (.(..), ..). Then .(.) = .. × ... It follows from Theorem 4.28 and Theorem 6.59 that it suffices to find bases for . and .. Thus we may assume that .
7#
發(fā)表于 2025-3-22 19:34:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:05:46 | 只看該作者
9#
發(fā)表于 2025-3-23 04:07:12 | 只看該作者
10#
發(fā)表于 2025-3-23 09:33:57 | 只看該作者
Intelligent Multimodal Systems,In this appendix we collect some definitions and facts in commutative algebra. These facts concern free modules, Krull dimension of rings and dimension of modules, graded rings and modules, associated primes, and regular sequences.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保靖县| 原阳县| 神池县| 财经| 响水县| 子洲县| 阿克陶县| 会理县| 东丽区| 宁波市| 孝感市| 广平县| 正定县| 台安县| 文成县| 万安县| 永嘉县| 富川| 林周县| 从江县| 纳雍县| 怀化市| 太湖县| 德惠市| 湾仔区| 岐山县| 平原县| 永和县| 永善县| 沅陵县| 西和县| 常宁市| 土默特左旗| 泗水县| 城市| 余江县| 牟定县| 邢台市| 新巴尔虎左旗| 宜宾县| 昌图县|