找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Around the Unit Circle; Mahler Measure, Inte James McKee,Chris Smyth Textbook 2021 Springer Nature Switzerland AG 2021 Mahler measure.Lehme

[復(fù)制鏈接]
樓主: Hemochromatosis
41#
發(fā)表于 2025-3-28 17:28:58 | 只看該作者
Cyclotomic Integer Symmetric Matrices Embedded in Toroidal and Cylindrical Tessellations,Having classified all cyclotomic integer symmetric matrices (those with Mahler measure 1), we move towards the analogue of Lehmer’s conjecture for integer symmetric matrices. The main goal in this chapter is to get an improved understanding of the structure of the maximal cyclotomic examples.
42#
發(fā)表于 2025-3-28 19:07:44 | 只看該作者
43#
發(fā)表于 2025-3-28 23:03:49 | 只看該作者
44#
發(fā)表于 2025-3-29 05:54:39 | 只看該作者
The Method of Explicit Auxiliary Functions,In this chapter, we consider bounds for various functions defined on conjugate sets of algebraic numbers. These bounds are obtained by the use of explicit auxiliary functions, which are built from the logarithms of moduli of specific polynomials.
45#
發(fā)表于 2025-3-29 08:02:28 | 只看該作者
46#
發(fā)表于 2025-3-29 12:36:22 | 只看該作者
47#
發(fā)表于 2025-3-29 16:38:39 | 只看該作者
https://doi.org/10.1007/978-3-030-91748-7xt, we describe how to find the points on a plane curve whose coordinates are roots of unity. Then we give some fundamental results on the Cassels height of a cyclotomic integer, followed by some results on the minimal number of roots of unity whose sum is a given cyclotomic integer. Most of the res
48#
發(fā)表于 2025-3-29 23:29:06 | 只看該作者
49#
發(fā)表于 2025-3-30 01:07:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:06:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶风县| 迁西县| 朝阳市| 思茅市| 华安县| 大方县| 达日县| 犍为县| 吉首市| 巴楚县| 射洪县| 元朗区| 镇雄县| 荆州市| 仪陇县| 星座| 务川| 荆州市| 贵定县| 芒康县| 福建省| 河北区| 洛宁县| 措美县| 射阳县| 班戈县| 临江市| 常德市| 鄯善县| 郑州市| 荣昌县| 津南区| 铜陵市| 合川市| 四会市| 民乐县| 阿城市| 新龙县| 奎屯市| 沧州市| 新泰市|