找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Around Classification Theory of Models; Saharon Shelah Book 1986 Springer-Verlag Berlin Heidelberg 1986 Abelian group.Boolean algebra.Fini

[復(fù)制鏈接]
查看: 38036|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:36:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Around Classification Theory of Models
影響因子2023Saharon Shelah
視頻videohttp://file.papertrans.cn/162/161744/161744.mp4
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Around Classification Theory of Models;  Saharon Shelah Book 1986 Springer-Verlag Berlin Heidelberg 1986 Abelian group.Boolean algebra.Fini
Pindex Book 1986
The information of publication is updating

書目名稱Around Classification Theory of Models影響因子(影響力)




書目名稱Around Classification Theory of Models影響因子(影響力)學(xué)科排名




書目名稱Around Classification Theory of Models網(wǎng)絡(luò)公開度




書目名稱Around Classification Theory of Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Around Classification Theory of Models被引頻次




書目名稱Around Classification Theory of Models被引頻次學(xué)科排名




書目名稱Around Classification Theory of Models年度引用




書目名稱Around Classification Theory of Models年度引用學(xué)科排名




書目名稱Around Classification Theory of Models讀者反饋




書目名稱Around Classification Theory of Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:32 | 只看該作者
Remarks on the numbers of ideals of Boolean algebra and open sets of a topology,ausdorff space .,. then 0. exists, (in fact, the consequences of the covering lemma on cardinal arithmetic are violated). We also prove that if the spread . of a Hausdorff space . satisfies .>?.(.) that the sup is obtained. For regular spaces μ;>2. is enough..Similarly for 3(.) and ..
地板
發(fā)表于 2025-3-22 04:37:34 | 只看該作者
Monadic logic: Hanf Numbers,or models of .. The main result is that if . does not have the independence property even after expanding by monadic predicates (or equivalently (.., 2.)?(., mon) then: ?.(λ).→.(λ).. In Part II we analyze such . getting a decomposition theorem like that in [BSh] (but weaker) (This is needed in part I.)
5#
發(fā)表于 2025-3-22 09:08:10 | 只看該作者
Findings of the Research Project,Finding a universe . we prove that any quantifier ranging on a family of .-place relations over ., is bi-expressible with a quantifier ranging over a family of equivalence relations, provided that .. Most of the analysis is carried assuming . only and for a stronger equivalence relation, also we find independence results in the other direction.
6#
發(fā)表于 2025-3-22 15:14:02 | 只看該作者
Classifying generalized quantifiers,Finding a universe . we prove that any quantifier ranging on a family of .-place relations over ., is bi-expressible with a quantifier ranging over a family of equivalence relations, provided that .. Most of the analysis is carried assuming . only and for a stronger equivalence relation, also we find independence results in the other direction.
7#
發(fā)表于 2025-3-22 19:51:06 | 只看該作者
On the no(M) for M of singular power,e arbitrary e.g. any .<λ and λ. (hence 2.)..See [Sh 5] for the back ground: where the result were proved for . with relations with infinitely many places. By the present paper the only problem left, if we assume .=., is whether .=., may happen for . of cardinality λ for λ singular.
8#
發(fā)表于 2025-3-22 21:40:50 | 只看該作者
9#
發(fā)表于 2025-3-23 03:17:23 | 只看該作者
10#
發(fā)表于 2025-3-23 09:31:21 | 只看該作者
,Particle Accelerator—How Does that Work?,e arbitrary e.g. any .<λ and λ. (hence 2.)..See [Sh 5] for the back ground: where the result were proved for . with relations with infinitely many places. By the present paper the only problem left, if we assume .=., is whether .=., may happen for . of cardinality λ for λ singular.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安县| 陇西县| 文昌市| 石门县| 辉县市| 临安市| 伊金霍洛旗| 靖州| 五峰| 屯昌县| 逊克县| 和田县| 宣恩县| 玛沁县| 新沂市| 贵定县| 图片| 资兴市| 天祝| 上犹县| 全州县| 嘉义市| 辽中县| 浦城县| 丰城市| 海兴县| 睢宁县| 南皮县| 邯郸县| 辽阳市| 泉州市| 都昌县| 吴江市| 五台县| 临漳县| 普宁市| 新建县| 丁青县| 海门市| 永德县| 甘南县|