找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetics; Marc Hindry Textbook 2011 Springer-Verlag London Limited 2011 Gauss sums.analytic number theory.arithmetics.diophantine equat

[復(fù)制鏈接]
樓主: GLOAT
21#
發(fā)表于 2025-3-25 05:44:20 | 只看該作者
Elliptic Curves,points on the curve can thus be endowed with a natural additive group structure. The most concrete description of an elliptic curve comes from its affine equation, written as . The theory of elliptic curves is a marvelous mixture of elementary mathematics and profound, advanced mathematics, a mixtur
22#
發(fā)表于 2025-3-25 10:35:19 | 只看該作者
Developments and Open Problems,al and one-sided—of some important research areas in number theory. In particular, every section contains at least one open problem. This last chapter also includes many statements whose proofs surpass the level of this book but which also provide an opportunity to combine and expand on the mathemat
23#
發(fā)表于 2025-3-25 12:17:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:08:22 | 只看該作者
Universitexthttp://image.papertrans.cn/b/image/161630.jpg
25#
發(fā)表于 2025-3-25 22:08:48 | 只看該作者
26#
發(fā)表于 2025-3-26 04:00:57 | 只看該作者
Klemens Priesnitz,Christian Lohsewith respect to multiplication. Furthermore, for every power of a prime number, .=.., there exists a unique finite field, up to isomorphism, of cardinality ., denoted ... We will review the construction of these objects and state their main properties. In the following sections, we expand on some st
27#
發(fā)表于 2025-3-26 06:44:41 | 只看該作者
28#
發(fā)表于 2025-3-26 12:00:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:10:45 | 只看該作者
https://doi.org/10.1007/978-3-658-28707-8ducing the key tool: the classical theory of functions of a complex variable, of which we will give a brief overview. The two following sections contain proofs of Dirichlet’s “theorem on arithmetic progressions” and the “prime number theorem”. Dirichlet series and in particular the Riemann zeta func
30#
發(fā)表于 2025-3-26 17:24:07 | 只看該作者
Angelina Pausin,Andreas Beck,Peter B?hmpoints on the curve can thus be endowed with a natural additive group structure. The most concrete description of an elliptic curve comes from its affine equation, written as . The theory of elliptic curves is a marvelous mixture of elementary mathematics and profound, advanced mathematics, a mixtur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶州市| 永兴县| 新建县| 霞浦县| 江孜县| 秦安县| 咸丰县| 米泉市| 安新县| 秭归县| 锦屏县| 廉江市| 平顶山市| 广州市| 漳州市| 宜兴市| 双城市| 如东县| 北京市| 基隆市| 浦县| 卢湾区| 旬邑县| 嘉善县| 兴义市| 全南县| 毕节市| 凌海市| 县级市| 云和县| 武陟县| 娄烦县| 鄱阳县| 新丰县| 冀州市| 泉州市| 南丹县| 梧州市| 枝江市| 文登市| 天等县|