找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetical Investigations; Representation Theor Shai M. J. Haran Book 2008 Springer-Verlag Berlin Heidelberg 2008 Arithmetic geometry.Bet

[復(fù)制鏈接]
查看: 46105|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:31:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Arithmetical Investigations
期刊簡(jiǎn)稱Representation Theor
影響因子2023Shai M. J. Haran
視頻videohttp://file.papertrans.cn/162/161628/161628.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Arithmetical Investigations; Representation Theor Shai M. J. Haran Book 2008 Springer-Verlag Berlin Heidelberg 2008 Arithmetic geometry.Bet
影響因子.In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L.2.(Z.p.,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L.2.([-1,1],w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GL.n.(q)that interpolates between the p-adic group GL.n.(Z.p.), and between its real (and complex) analogue -the orthogonal O.n. (and unitary U.n. )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and be
Pindex Book 2008
The information of publication is updating

書目名稱Arithmetical Investigations影響因子(影響力)




書目名稱Arithmetical Investigations影響因子(影響力)學(xué)科排名




書目名稱Arithmetical Investigations網(wǎng)絡(luò)公開度




書目名稱Arithmetical Investigations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arithmetical Investigations被引頻次




書目名稱Arithmetical Investigations被引頻次學(xué)科排名




書目名稱Arithmetical Investigations年度引用




書目名稱Arithmetical Investigations年度引用學(xué)科排名




書目名稱Arithmetical Investigations讀者反饋




書目名稱Arithmetical Investigations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:59:49 | 只看該作者
Art und Umfang der Information,In Chap. 10 we describe briefly the quantum Grassmannian, the .-Selberg measure, and the multivariable (Little) .-Jacobi polynomials which are the idempotents and interpolate between the .-adic and the real analogues.
地板
發(fā)表于 2025-3-22 07:11:50 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:44 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:58 | 只看該作者
8#
發(fā)表于 2025-3-22 23:30:46 | 只看該作者
https://doi.org/10.1007/978-3-540-78379-4Arithmetic geometry; Beta; DEX; Finite; Fourier transform; Markov chain; Markov chains; approximation; arith
9#
發(fā)表于 2025-3-23 05:02:16 | 只看該作者
10#
發(fā)表于 2025-3-23 07:17:52 | 只看該作者
Authentication and Authorization,metic (number field .), and the two basic problems of arithmetic: the problem of the real primes and the problem of non-existence of a surface Spec O. × Spec O. (analogues to . × F. .). We then give the “Weil philosophy”: the explicit sums of arithmetic are the intersection number of Frobenius divis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渝北区| 长春市| 乐至县| 黄大仙区| 景洪市| 寿光市| 环江| 临沂市| 镇雄县| 灵璧县| 彰化市| 余庆县| 新乐市| 青海省| 武宁县| 西吉县| 夏津县| 凤阳县| 同德县| 东乡县| 文化| 当涂县| 铁岭市| 新乡县| 廉江市| 中江县| 东乡族自治县| 鹤山市| 驻马店市| 龙州县| 三亚市| 荆州市| 万安县| 东安县| 麻城市| 勐海县| 武隆县| 灌南县| 吉首市| 安乡县| 璧山县|