找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetical Aspects of the Large Sieve Inequality; Olivier Ramaré,D. S. Ramana Book 2009 Hindustan Book Agency (India) 2009

[復(fù)制鏈接]
樓主: BREED
21#
發(fā)表于 2025-3-25 05:03:27 | 只看該作者
Object-Oriented Application Design,We now turn towards another way of using the large sieve inequality in an arithmetical way, here on prime numbers. This application comes from (Ramaré & Schlage-Puchta, 2008). A exposition in the French addressing a large audience can be found in (Ramare, 2005).
22#
發(fā)表于 2025-3-25 08:06:17 | 只看該作者
23#
發(fā)表于 2025-3-25 15:24:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:31:52 | 只看該作者
Business Framework Implementation,Upto now, we did not investigate precisely what happens at the place at infinity. We introduced some Fourier transforms in chapter 10, and we already saw some expressions frequent in this area of mathematics in section 1.2.1. We expand all these considerations in this chapter, and, inter alia, shall provide a proof of Theorem 1.1.
25#
發(fā)表于 2025-3-25 20:56:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:20 | 只看該作者
The large sieve inequality,We begin with an abstract hermitian setting which we will use to prove the large sieve inequality. We develop more material than is required for such a task. This is simply to prepare the ground for future uses, and we shall even expand on this setting in chapter 7; the final stroke will only appear in section 10.1.
27#
發(fā)表于 2025-3-26 07:24:48 | 只看該作者
An extension of the classical arithmetical theory of the large sieve,Part of the material given here has already appeared in (Ramaré & Ruzsa, 2001). Theorem 2.1 is the main landmark of this chapter. From there onwards, what we do should become clearer to the reader. In particular, we shall detail an application of Theorem 2.1 to the Brun-Titchmarsh Theorem.
28#
發(fā)表于 2025-3-26 12:18:25 | 只看該作者
Some general remarks on arithmetical functions,We present here some general material pertaining to the family of functions we consider in our sieve setting (see chapter 2, in particular section 2.2).
29#
發(fā)表于 2025-3-26 13:17:08 | 只看該作者
30#
發(fā)表于 2025-3-26 20:14:28 | 只看該作者
A weighted hermitian inequality,We continue to develop the theory in the general context of chapter 1 with a view to an application in the chapter that follows.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩义市| 寻甸| 龙里县| 铅山县| 仁怀市| 莲花县| 芦溪县| 六枝特区| 昭通市| 东宁县| 阿拉尔市| 博客| 乌拉特后旗| 西乌| 安徽省| 海淀区| 平顶山市| 遵义市| 合江县| 乌鲁木齐县| 邹平县| 万山特区| 龙岩市| 翁源县| 青海省| 田东县| 浮梁县| 泰和县| 兰坪| 象山县| 定远县| 广平县| 新晃| 镇原县| 祁阳县| 澳门| 郸城县| 鄂托克前旗| 青冈县| 安阳县| 华宁县|