找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; Second International Joachim Gathen,José Luis Ima?a,?etin Kaya Ko? Conference proceedings 2008 Springer-Verlag

[復(fù)制鏈接]
查看: 25879|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:45:48 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Arithmetic of Finite Fields
期刊簡稱Second International
影響因子2023Joachim Gathen,José Luis Ima?a,?etin Kaya Ko?
視頻videohttp://file.papertrans.cn/162/161620/161620.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Arithmetic of Finite Fields; Second International Joachim Gathen,José Luis Ima?a,?etin Kaya Ko? Conference proceedings 2008 Springer-Verlag
影響因子This book constitutes the refereed proceedings of the Second International Workshop on the Arithmetic of Finite Fields, WAIFI 2008, held in Siena, Italy, in July 2008. The 16 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers are organized in topical sections on structures in finite fields, efficient finite field arithmetic, efficient implementation and architectures, classification and construction of mappings over finite fields, and codes and cryptography.
Pindex Conference proceedings 2008
The information of publication is updating

書目名稱Arithmetic of Finite Fields影響因子(影響力)




書目名稱Arithmetic of Finite Fields影響因子(影響力)學(xué)科排名




書目名稱Arithmetic of Finite Fields網(wǎng)絡(luò)公開度




書目名稱Arithmetic of Finite Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Arithmetic of Finite Fields被引頻次




書目名稱Arithmetic of Finite Fields被引頻次學(xué)科排名




書目名稱Arithmetic of Finite Fields年度引用




書目名稱Arithmetic of Finite Fields年度引用學(xué)科排名




書目名稱Arithmetic of Finite Fields讀者反饋




書目名稱Arithmetic of Finite Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:04:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:23:20 | 只看該作者
Optimal Extension Field Inversion in the Frequency Domains the first time a frequency domain finite field inversion algorithm is proposed for elliptic curve cryptography. We believe the proposed algorithm would be well suited especially for efficient low-power hardware implementation of elliptic curve cryptography using affine coordinates in constrained s
地板
發(fā)表于 2025-3-22 06:28:30 | 只看該作者
Efficient Finite Fields in the Maxima Computer Algebra Systemwe focused our efforts on efficient computation of primitive elements and modular roots. Our optimizations involve some heuristic methods that use “modular composition” and the generalized Tonelli-Shanks algorithm. Other open and free systems such as GP/Pari do not include in their standard packages
5#
發(fā)表于 2025-3-22 11:14:17 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:52 | 只看該作者
Digit-Serial Structures for the Shifted Polynomial Basis Multiplication over Binary Extension Fieldsch is known as the shifted polynomial basis, has been introduced. Current research shows that this new basis provides better performance in designing bit-parallel and subquadratic space complexity multipliers over binary extension fields. In this paper, we study digit-serial multiplication algorithm
7#
發(fā)表于 2025-3-22 17:51:03 | 只看該作者
Some Theorems on Planar Mappingso planar functions are CCZ-equivalent exactly when they are EA-equivalent. We give a sharp lower bound on the size of the image set of a planar function. Further we observe that all currently known main examples of planar functions have image sets of that minimal size.
8#
發(fā)表于 2025-3-22 23:52:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:12:26 | 只看該作者
EA and CCZ Equivalence of Functions over ,(2,)functions. We show that they can be related to subsets .[.] and .[.] of equivalence classes [.] of transversals, respectively, thus clarifying their relationship and providing a new approach to their study. We derive a formula which characterises when two CCZ-equivalent functions are EA-inequivalent
10#
發(fā)表于 2025-3-23 07:44:01 | 只看該作者
On the Number of Two-Weight Cyclic Codes with Composite Parity-Check Polynomialsted in [4]. On the other hand, an explicit formula for the number of one-weight cyclic codes, when the length and dimension are given, was proved in [3]. By imposing some conditions on the finite field, we now combine both results in order to give a lower bound for the number of two-weight cyclic co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑山县| 南充市| 科技| 张家港市| 上虞市| 和政县| 砀山县| 如皋市| 三都| 沙坪坝区| 章丘市| 石家庄市| 龙胜| 射洪县| 临江市| 施秉县| 高唐县| 和顺县| 临沧市| 垦利县| 宝鸡市| 包头市| 仙居县| 杂多县| 太康县| 乐山市| 临泉县| 衡阳市| 巴楚县| 紫金县| 介休市| 阿合奇县| 桓仁| 阿巴嘎旗| 句容市| 克什克腾旗| 堆龙德庆县| 台州市| 广丰县| 北安市| 苏尼特左旗|