找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 5th International Wo ?etin Kaya Ko?,Sihem Mesnager,Erkay Sava? Conference proceedings 2015 Springer Internatio

[復(fù)制鏈接]
樓主: Clinical-Trial
11#
發(fā)表于 2025-3-23 10:49:33 | 只看該作者
12#
發(fā)表于 2025-3-23 14:25:43 | 只看該作者
Conference proceedings 2015 the advances in the theory, applications, and implementations of finite fields. The workshop will help to bridge the gap between the mathematical theory of finite fields and their hardware/software implementations and technical applications.
13#
發(fā)表于 2025-3-23 20:59:18 | 只看該作者
ASPES: A Skeletal Pascal Expert System,imultaneously in the verification procedures to get better complexity. We also present the explicit number of operations of the verification procedures of these REA-equivalence types. Moreover, we construct two new REA-equivalence types and present the verification procedures of these types with their complexities.
14#
發(fā)表于 2025-3-23 23:06:18 | 只看該作者
15#
發(fā)表于 2025-3-24 06:15:02 | 只看該作者
On Verification of Restricted Extended Affine Equivalence of Vectorial Boolean Functionsimultaneously in the verification procedures to get better complexity. We also present the explicit number of operations of the verification procedures of these REA-equivalence types. Moreover, we construct two new REA-equivalence types and present the verification procedures of these types with their complexities.
16#
發(fā)表于 2025-3-24 08:39:42 | 只看該作者
On o-Equivalence of Niho Bent Functionsrect. We also deduce two more transformations preserving o-equivalence but providing potentially EA-inequivalent bent functions. We exhibit examples of infinite classes of o-polynomials for which at least three EA-inequivalent Niho bent functions can be derived.
17#
發(fā)表于 2025-3-24 12:15:46 | 只看該作者
18#
發(fā)表于 2025-3-24 16:47:47 | 只看該作者
Conference proceedings 2015 in September 2014. The 9 revised full papers and 43 invited talks presented were carefully reviewed and selected from 27 submissions. This workshop is a forum of mathematicians, computer scientists, engineers and physicists performing research on finite field arithmetic, interested in communicating
19#
發(fā)表于 2025-3-24 21:30:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:11 | 只看該作者
https://doi.org/10.1007/978-1-4612-2270-5n of the implementations of those primitives in the same platform and also give links to the codes we have developed. Although we did not reach the speed given in the paper in some cases, we managed to beat the results of the reference implementations when they are available.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 灯塔市| 农安县| 浦县| 宁河县| 上思县| 江北区| 揭西县| 西安市| 康马县| 得荣县| 卢氏县| 景泰县| 罗山县| 哈巴河县| 榆林市| 昭觉县| 保德县| 定结县| 嘉善县| 南京市| 竹北市| 明光市| 新丰县| 昆山市| 大理市| 光泽县| 永宁县| 永泰县| 武胜县| 博乐市| 分宜县| 正安县| 兴海县| 营口市| 慈溪市| 阳西县| 九江县| 嵊州市| 巴林右旗| 尚义县|