找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復(fù)制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:44:55 | 只看該作者
Oracle Database 11, Architecturet two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
12#
發(fā)表于 2025-3-23 14:45:53 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0be paired with the cohomology classes of complete subvarieties of the moduli space to give classical Siegel modular forms with higher Noether–Lefschetz numbers as Fourier coefficients. Examples of such complete families associated to quadratic spaces over totally real number fields are constructed.
13#
發(fā)表于 2025-3-23 21:37:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0surfaces are characterized among Enriques surfaces by the group action by . with prescribed topological type of fixed point loci. As an application, we construct Mathieu type actions by the groups . and .. Two introductory sections are also included.
14#
發(fā)表于 2025-3-24 01:52:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:40 | 只看該作者
A Structure Theorem for Fibrations on Delsarte Surfacest two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
16#
發(fā)表于 2025-3-24 07:35:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:36:05 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:47 | 只看該作者
https://doi.org/10.1007/978-1-4614-6403-7$K3$ surfaces and Enriques surfaces; Calabi-Yau manifolds; cycles and subschemes; variation of Hodge st
19#
發(fā)表于 2025-3-24 21:09:41 | 只看該作者
978-1-4899-9918-4Springer Science+Business Media New York 2013
20#
發(fā)表于 2025-3-25 01:53:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荣成市| 游戏| 永善县| 郑州市| 奉贤区| 石阡县| 龙井市| 宜春市| 台州市| 调兵山市| 和田县| 台北县| 武冈市| 山丹县| 大化| 乡城县| 远安县| 枣庄市| 高清| 岚皋县| 通榆县| 繁昌县| 出国| 始兴县| 汝南县| 那曲县| 扎囊县| 正宁县| 兴仁县| 涪陵区| 鲁山县| 吐鲁番市| 鄂托克旗| 墨脱县| 清丰县| 阳信县| 邢台县| 葫芦岛市| 新竹县| 新野县| 甘南县|