找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry Around Hypergeometric Functions; Lecture Notes of a C Rolf-Peter Holzapfel,A. Muhammed Uluda?,Masaaki Yo Book 2007

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 07:06:43 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:44 | 只看該作者
Invariant Functions with Respect to the Whitehead-Link,and for a few groups commensurable with .. We make use of theta functions on the bounded symmetric domain . of type . . and an embedding . : ?. → .. The quotient spaces of ?. by these groups are realized by these invariant functions. We review classical results on the .-function, the .-function and
23#
發(fā)表于 2025-3-25 14:41:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:28:41 | 只看該作者
Algebraic Values of Schwarz Triangle Functions,at algebraic arguments? The answer is based mainly on considerations of complex multiplication of certain Prym varieties in Jacobians of hypergeometric curves. The paper can serve as an introduction to transcendence techniques for hypergeometric functions, but contains also new results and examples.
25#
發(fā)表于 2025-3-26 00:00:49 | 只看該作者
GKZ Hypergeometric Structures,eory of hypergeometric structures of Gelfand, Kapranov and Zelevinsky, including Differential Equations, Integrals and Series, with emphasis on the latter. The Secondary Fan is constructed and subsequently used to describe the ‘geography’ of the domains of convergence of the Γ-series. A solution to
26#
發(fā)表于 2025-3-26 01:08:12 | 只看該作者
27#
發(fā)表于 2025-3-26 06:37:48 | 只看該作者
Business object implementation,We give a basic introduction to the properties of Gauss’ hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hypergeometric equation.
28#
發(fā)表于 2025-3-26 10:38:33 | 只看該作者
29#
發(fā)表于 2025-3-26 12:54:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:34 | 只看該作者
Expert Oracle Database 10g AdministrationThis is an introduction to complex orbifolds with an emphasis on orbifolds in dimension 2 and covering relations between them.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海安县| 望都县| 新竹县| 博客| 武强县| 衡山县| 定日县| 腾冲县| 土默特右旗| 永和县| 句容市| 鱼台县| 海原县| 娄烦县| 扎兰屯市| 沙坪坝区| 获嘉县| 织金县| 余干县| 德阳市| 丰镇市| 左权县| 麻城市| 益阳市| 阿拉善盟| 江津市| 武穴市| 四平市| 德兴市| 明溪县| 邵阳市| 徐汇区| 安吉县| 沅江市| 无锡市| 稻城县| 蒲江县| 若羌县| 革吉县| 伽师县| 大田县|