找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[復(fù)制鏈接]
樓主: 巡洋
31#
發(fā)表于 2025-3-27 00:13:49 | 只看該作者
32#
發(fā)表于 2025-3-27 03:48:25 | 只看該作者
,Generators of the Néron-Severi Group of a Fermat Surface,vial work before one can determine the Picard number of a given variety, let alone the full structure of its Néron-Severi group. This is the case even for algebraic surfaces over the field of complex numbers, where it can be regarded as the subgroup of the cohomology group ..(., ?) characterized by the Lefschetz criterion.
33#
發(fā)表于 2025-3-27 07:34:31 | 只看該作者
The Action of an Automorphism of , On a Shimura Variety and its Special Points,he proof is extended to cover all Shimura varieties. As a consequence, one obtains a complete proof of Shimura’s conjecture on the existence of canonical models. The main new ingredients in the proof are the results of Kazhdan [7] and the methods of Borovoi [2].
34#
發(fā)表于 2025-3-27 11:26:25 | 只看該作者
35#
發(fā)表于 2025-3-27 13:56:45 | 只看該作者
Linear Elastic Fracture Mechanics, is to conjecture such bounds for a suitable basis. Indeed, .?.(.) is a vector space over . with a positive definite quadratic form given by the Néron-Tate height: if . is defined by the equation ., and . = (.) is a rational point with . = . written as a fraction in lowest form, then one defines the .-height ..
36#
發(fā)表于 2025-3-27 18:14:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:40:04 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:29 | 只看該作者
39#
發(fā)表于 2025-3-28 06:56:07 | 只看該作者
https://doi.org/10.1007/b118073fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic . to the study of the moduli space when . = 2.
40#
發(fā)表于 2025-3-28 13:51:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五华县| 兴化市| 云阳县| 安岳县| 镇安县| 古交市| 时尚| 民勤县| 阿勒泰市| 康保县| 通化县| 蕲春县| 如东县| 昭觉县| 徐州市| 达州市| 胶南市| 五河县| 广安市| 武清区| 炎陵县| 巧家县| 桂林市| 临汾市| 乐平市| 宽甸| 常宁市| 思茅市| 邢台市| 江川县| 鸡西市| 蒲江县| 玉溪市| 墨脱县| 建德市| 南乐县| 株洲县| 漯河市| 凤阳县| 乐昌市| 花垣县|