找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry, Number Theory, and Computation; Jennifer S. Balakrishnan,Noam Elkies,John Voight Conference proceedings 2021 The Edit

[復(fù)制鏈接]
樓主: Nutraceutical
31#
發(fā)表于 2025-3-26 22:01:35 | 只看該作者
Computing Rational Points on Rank 0 Genus 3 Hyperelliptic Curves, Chabauty–Coleman method to find the zero set of a certain system of .-adic integrals, which is known to be finite and include the set of rational points .. We implemented an algorithm in Sage to carry out the Chabauty–Coleman method on a database of 5870 curves.
32#
發(fā)表于 2025-3-27 03:12:04 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Cole
33#
發(fā)表于 2025-3-27 05:26:09 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:29 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorith
35#
發(fā)表于 2025-3-27 17:20:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:52:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:02:40 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:07 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:37 | 只看該作者
Curves with Sharp Chabauty-Coleman Bound,al points if the rank condition is satisfied. We give numerous examples of genus two and rank one curves for which Coleman’s bound is sharp. Based on one of those curves, we construct an example of a curve of genus five whose rational points are determined using the descent method together with Coleman’s theorem.
40#
發(fā)表于 2025-3-28 10:28:44 | 只看該作者
Linear Dependence Among Hecke Eigenvalues,n cuspidal eigenform. Our motivation lies in its algorithmic application. For any fixed positive integer ., the bound established here yields an algorithm that computes cuspidal Hecke eigenforms with a given weight . whose Hecke eigenvalues generate a number field of degree .. The resulting algorithm reduces to Cremona’s when .?=?1 and .?=?2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇宁| 万盛区| 常宁市| 蒙山县| 兴山县| 东光县| 晋宁县| 靖西县| 安岳县| 垦利县| 贺州市| 安泽县| 彭水| 中江县| 辉县市| 公主岭市| 太和县| 新河县| 青神县| 昆山市| 靖远县| 醴陵市| 鹿泉市| 鹤峰县| 新闻| 蒙阴县| 天水市| 寿阳县| 湘潭县| 开原市| 壤塘县| 宁强县| 宝丰县| 绥芬河市| 贡嘎县| 仁怀市| 桂林市| 米易县| 咸丰县| 德清县| 南康市|