找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry over Global Function Fields; Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Textbook 2014 Springer Basel 2014 Drin

[復(fù)制鏈接]
樓主: 街道
11#
發(fā)表于 2025-3-23 11:05:19 | 只看該作者
Expert Apache Cassandra Administrationin results on curves and their Jacobians over function fields, with emphasis on the group of rational points of the Jacobian, and to explain various constructions of Jacobians with large Mordell–Weil rank.
12#
發(fā)表于 2025-3-23 14:24:01 | 只看該作者
https://doi.org/10.1007/978-3-0348-0853-8Drinfeld modules; Gamma functions; L-functions; Zeta and Multizeta functions; cohomology theory; t-motive
13#
發(fā)表于 2025-3-23 21:52:17 | 只看該作者
Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Includes a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell–We
14#
發(fā)表于 2025-3-24 01:09:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:18:44 | 只看該作者
https://doi.org/10.1007/978-1-4302-4951-1This lecture series introduces in the first part a cohomological theory for varieties in positive characteristic with finitely generated rings of this characteristic as coefficients developed jointly with Richard Pink. In the second part various applications are given.
16#
發(fā)表于 2025-3-24 07:01:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:58 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:38 | 只看該作者
On Geometric Iwasawa Theory and Special Values of Zeta Functions,Having succumbed to the requests of the organisers of the Research Programme on Function Field Arithmetic that was held in 2010 at the CRM in Barcelona, we present here a survey of some recent results concerning certain aspects of the Iwasawa theory of varieties over finite fields.
19#
發(fā)表于 2025-3-24 21:18:09 | 只看該作者
20#
發(fā)表于 2025-3-24 23:56:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
册亨县| 朝阳市| 桐庐县| 峨眉山市| 台前县| 叶城县| 肥西县| 简阳市| 嘉兴市| 峡江县| 义马市| 华蓥市| 遵义市| 长垣县| 济宁市| 通江县| 大冶市| 洪湖市| 军事| 呼图壁县| 凌源市| 麟游县| 阿坝县| 康保县| 新津县| 马鞍山市| 新闻| 当涂县| 龙里县| 望江县| 霍邱县| 八宿县| 土默特右旗| 法库县| 张家界市| 汽车| 伊川县| 旺苍县| 迁安市| 临江市| 宁阳县|