找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry over Global Function Fields; Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Textbook 2014 Springer Basel 2014 Drin

[復(fù)制鏈接]
樓主: 街道
11#
發(fā)表于 2025-3-23 11:05:19 | 只看該作者
Expert Apache Cassandra Administrationin results on curves and their Jacobians over function fields, with emphasis on the group of rational points of the Jacobian, and to explain various constructions of Jacobians with large Mordell–Weil rank.
12#
發(fā)表于 2025-3-23 14:24:01 | 只看該作者
https://doi.org/10.1007/978-3-0348-0853-8Drinfeld modules; Gamma functions; L-functions; Zeta and Multizeta functions; cohomology theory; t-motive
13#
發(fā)表于 2025-3-23 21:52:17 | 只看該作者
Gebhard B?ckle,David Burns,Douglas Ulmer,Francesc Includes a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell–We
14#
發(fā)表于 2025-3-24 01:09:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:18:44 | 只看該作者
https://doi.org/10.1007/978-1-4302-4951-1This lecture series introduces in the first part a cohomological theory for varieties in positive characteristic with finitely generated rings of this characteristic as coefficients developed jointly with Richard Pink. In the second part various applications are given.
16#
發(fā)表于 2025-3-24 07:01:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:58 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:38 | 只看該作者
On Geometric Iwasawa Theory and Special Values of Zeta Functions,Having succumbed to the requests of the organisers of the Research Programme on Function Field Arithmetic that was held in 2010 at the CRM in Barcelona, we present here a survey of some recent results concerning certain aspects of the Iwasawa theory of varieties over finite fields.
19#
發(fā)表于 2025-3-24 21:18:09 | 只看該作者
20#
發(fā)表于 2025-3-24 23:56:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 汝阳县| 庆安县| 淮北市| 宜宾市| 定西市| 和静县| 山丹县| 周至县| 河源市| 象州县| 乌兰察布市| 商河县| 南皮县| 石门县| 宁武县| 衡东县| 博罗县| 辛集市| 滕州市| 宜兰市| 昌乐县| 宁阳县| 嘉义县| 安西县| 黔南| 建阳市| 石阡县| 克山县| 沙洋县| 张掖市| 盐津县| 新河县| 乌兰察布市| 嘉黎县| 芷江| 改则县| 沧州市| 虎林市| 长春市| 灯塔市|