找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Architecture and Mathematics from Antiquity to the Future; Volume I: Antiquity Kim Williams,Michael J. Ostwald Book 2015 Springer Internat

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:18:44 | 只看該作者
42#
發(fā)表于 2025-3-28 18:56:29 | 只看該作者
e state of the art of multidisciplinary scholarship in archi.Every age and every culture has relied on the incorporation of mathematics in their works of architecture to imbue the built environment with meaning and order. Mathematics is also central to the production of architecture, to its methods
43#
發(fā)表于 2025-3-28 23:23:10 | 只看該作者
44#
發(fā)表于 2025-3-29 04:22:28 | 只看該作者
https://doi.org/10.1007/978-0-387-33419-6mproved, but the fundamental purpose of the application of mathematics in architecture has endured throughout history. The purpose of the present chapter is to examine and to begin to identify the different ways in which mathematics is used in architecture.
45#
發(fā)表于 2025-3-29 10:25:37 | 只看該作者
46#
發(fā)表于 2025-3-29 12:41:37 | 只看該作者
47#
發(fā)表于 2025-3-29 16:47:03 | 只看該作者
Relationships Between Architecture and Mathematics,ace a brief history of the growth of disciplines and professions over time in order to show how very closely connected the two were. The authors, editors of the present publication, then go on to introduce the 47 chapters that comprise vol. I.
48#
發(fā)表于 2025-3-29 21:07:53 | 只看該作者
49#
發(fā)表于 2025-3-30 00:35:24 | 只看該作者
50#
發(fā)表于 2025-3-30 04:36:05 | 只看該作者
“Systems of Monads” in the Hagia Sophia : Neo-Platonic Mathematics in the Architecture of Late Antiqads however to a diagonal with an irrational value thus to further irrational building dimensions. The present paper shows that the plan is essentially based on ‘systems of monads’ using exclusively integral numbers. Further integral distances can be obtained by division or combination, and finally combined into a geometrical figure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嵊泗县| 兴义市| 南华县| 马公市| 宽城| 西青区| 敖汉旗| 冕宁县| 天津市| 从化市| 胶州市| 彰化县| 峨眉山市| 六安市| 南木林县| 霍城县| 金湖县| 宁明县| 凉城县| 巩义市| 工布江达县| 如东县| 沙湾县| 高陵县| 临江市| 沅陵县| 甘谷县| 万山特区| 石狮市| 理塘县| 景德镇市| 绍兴县| 高平市| 阿勒泰市| 五大连池市| 濮阳市| 芒康县| 株洲县| 若尔盖县| 德格县| 荆州市|