找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Architecture and Mathematics from Antiquity to the Future; Volume I: Antiquity Kim Williams,Michael J. Ostwald Book 2015 Springer Internat

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:16:44 | 只看該作者
22#
發(fā)表于 2025-3-25 09:30:37 | 只看該作者
23#
發(fā)表于 2025-3-25 15:44:25 | 只看該作者
24#
發(fā)表于 2025-3-25 18:15:25 | 只看該作者
Relationships Between History of Mathematics and History of Artn reserved for art and architecture. In this paper I will show several examples of the existence of three levels of interaction between mathematics and art: the presence of a mathematical substrate in various archaeological and artistic relics from antiquity; the conscious or unconscious application
25#
發(fā)表于 2025-3-25 22:45:12 | 只看該作者
26#
發(fā)表于 2025-3-26 03:13:23 | 只看該作者
The Influence of Mathematics on the Development of Structural Form term “function” as purely meeting the primary task, but for past eras a structure not only had to be of material usefulness but also psychologically beneficial and intellectually fruitful. In Pre-Industrial Revolution religious structures geometry was an important tool, as was the choice of forms a
27#
發(fā)表于 2025-3-26 05:13:50 | 只看該作者
Old Shoes, New Feet, and the Puzzle of the First Square in Ancient Egyptian Architecturees of the square, but only by virtue of the existence of a primal figure, a first and original square. That ‘first’ square has to be the result of a simple, clear, effective and efficient method of construction: a method that constituted its original geometry and established its perfection as the in
28#
發(fā)表于 2025-3-26 10:01:47 | 只看該作者
29#
發(fā)表于 2025-3-26 14:13:29 | 只看該作者
A New Geometric Analysis of the Teotihuacan Complex pyramids and buildings. The intention of this project is to look at Teotihuacan as an organized urban center in order to see what geometric systems are present in the layout of the area. As Teotihuacan was developed over a long period of time, did the builders and city planners have an overall geom
30#
發(fā)表于 2025-3-26 18:23:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹北市| 香格里拉县| 建始县| 靖边县| 赣州市| 饶阳县| 南汇区| 高青县| 福贡县| 阜新| 汶上县| 锡林郭勒盟| 乌什县| 洱源县| 新密市| 通城县| 武冈市| 金山区| 雅江县| 明星| 丰台区| 南丹县| 芜湖县| 英超| 大港区| 德惠市| 新密市| 周至县| 昌邑市| 寿阳县| 夏邑县| 方城县| 武山县| 鄯善县| 华安县| 潼关县| 元阳县| 福清市| 高碑店市| 永宁县| 石嘴山市|