找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arboreal Group Theory; Proceedings of a Wor Roger C. Alperin Conference proceedings 1991 Springer-Verlag New York, Inc. 1991 Group theory.a

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 10:15:15 | 只看該作者
Pregroups and Lyndon Length Functions, go back to Baer [.]. A pregroup is a set with a partial multiplication having certain group-like properties, to which one can associate a group (the universal group of the pregroup), and there is a normal form for the elements of the group in terms of the pregroup. This generalises the construction
52#
發(fā)表于 2025-3-30 13:17:29 | 只看該作者
,?-Tree Actions are Not Determined by the Translation Lengths of Finitely Many Elements,nslation length functions on . which arise from (small) .-actions on ?-trees. It is well known that, for any finitely generated group ., an element of Hom(.(2, ?)) is determined up to conjugation in .(2,?) by the traces of a finite set of elements of .. (See, for example, [.].) The purpose of this p
53#
發(fā)表于 2025-3-30 16:44:13 | 只看該作者
The Boundary of Outer Space in Rank Two,ce has come to be known as “outer space.” Outer space can be defined as a space of free actions of .. on simplicial ?-trees; we require that all actions be minimal, and we identify two actions if they differ only by scaling the metric on the ?-tree. To describe the topology on outer space, we associ
54#
發(fā)表于 2025-3-31 00:04:14 | 只看該作者
,Cohomological dimension of groups acting on ?-trees,ch act freely on ?-trees. It is a classical theorem that any group which acts freely, without inversions, on a simplicial tree is free. If . is a Λ-tree for Λ ? ? a subgroup (possibly equal to ? itself), it is clear that not only free groups can act freely on an ?-tree but that free abelian groups,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇左市| 来安县| 浠水县| 北川| 阿合奇县| 汪清县| 马关县| 温州市| 绥宁县| 济源市| 沁阳市| 朝阳区| 南和县| 剑河县| 湖北省| 循化| 定南县| 马公市| 漳州市| 阳信县| 台北县| 萝北县| 瑞丽市| 阿鲁科尔沁旗| 红原县| 花莲县| 新巴尔虎右旗| 宁津县| 项城市| 大邑县| 民丰县| 塘沽区| 嘉兴市| 新巴尔虎左旗| 江都市| 天台县| 霸州市| 双城市| 弥渡县| 三门县| 台中县|