找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arbeitstagung Bonn 2013; In Memory of Friedri Werner Ballmann,Christian Blohmann,Don Zagier Book 2016 Springer International Publishing Swi

[復制鏈接]
樓主: Cession
21#
發(fā)表于 2025-3-25 04:12:36 | 只看該作者
22#
發(fā)表于 2025-3-25 09:23:37 | 只看該作者
23#
發(fā)表于 2025-3-25 14:02:45 | 只看該作者
,Elliptic Calabi–Yau Threefolds over a del Pezzo Surface, form. In particular, over a del Pezzo surface of degree 8, these elliptic threefolds are Calabi–Yau threefolds. We will discuss especially the generating functions of Gromov–Witten and Gopakumar–Vafa invariants.
24#
發(fā)表于 2025-3-25 18:12:53 | 只看該作者
25#
發(fā)表于 2025-3-25 22:34:33 | 只看該作者
26#
發(fā)表于 2025-3-26 01:07:10 | 只看該作者
27#
發(fā)表于 2025-3-26 04:23:29 | 只看該作者
https://doi.org/10.1007/978-3-030-76175-2his was one motivation for the Atiyah–Singer index theorem but also for my own thesis about Dirac operators and K?hler manifolds. Indeed the interaction between topology and algebraic geometry which he developed has been a constant theme in virtually all my work.
28#
發(fā)表于 2025-3-26 12:33:27 | 只看該作者
Eleonora Poli,Nicoletta Pirozzi form. In particular, over a del Pezzo surface of degree 8, these elliptic threefolds are Calabi–Yau threefolds. We will discuss especially the generating functions of Gromov–Witten and Gopakumar–Vafa invariants.
29#
發(fā)表于 2025-3-26 15:48:53 | 只看該作者
Finland: Cherry-Picking on Solidarity?ory. The paper is an extended version of the talk the author gave at the workshop on Donaldson–Thomas invariants at the University Paris-7 in June 2013 and at the conference “Algebra, Geometry, Physics” dedicated to Maxim Kontsevich (June 2014, IHES). Because of the origin of the paper it contains more speculations than proofs.
30#
發(fā)表于 2025-3-26 18:30:39 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宾阳县| 修武县| 临泉县| 云霄县| 墨江| 利辛县| 宝兴县| 堆龙德庆县| 宽甸| 尚义县| 临沭县| 吉安市| 新晃| 广东省| 定远县| 沽源县| 长寿区| 兴山县| 鸡东县| 石棉县| 大连市| 阳山县| 常州市| 长寿区| 邯郸县| 淮南市| 昌吉市| 昌图县| 张家界市| 伊宁市| 万荣县| 利川市| 凤山市| 土默特右旗| 万山特区| 咸宁市| 施甸县| 青阳县| 洪泽县| 晋中市| 彭泽县|