找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques; 7th International Wo Klaus Jansen,Sanjeev Khanna,Da

[復制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-27 00:53:09 | 只看該作者
32#
發(fā)表于 2025-3-27 01:55:47 | 只看該作者
https://doi.org/10.1007/978-3-319-74908-2pping. The total additive distortion is the sum of errors in all pairwise distances in the input data. This problem has been shown to be NP-hard by [13]. We give an .(log.) approximation for this problem by using Garg?.’s?[10] algorithm for the multi-cut problem as a subroutine. Our algorithm also g
33#
發(fā)表于 2025-3-27 07:48:27 | 只看該作者
Dynamics of Geodesic and Horocyclic Flows,hs of at most logarithmic radius, an .(log..) additive approximation algorithm is known, hence our lower bound is tight. To the best of our knowledge, this is the first tight additive polylogarithmic approximation result.
34#
發(fā)表于 2025-3-27 12:48:53 | 只看該作者
Jouni Parkkonen,Frédéric Paulinontains two variables. Hastad shows that this problem is NP-hard to approximate within a ratio of 11/12 + . for .=2, and Andersson, Engebretsen and Hastad show the same hardness of approximation ratio for . ≥ 11, and somewhat weaker results (such as 69/70) for . = 3,5,7. We prove that max-2lin. is e
35#
發(fā)表于 2025-3-27 14:11:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:14:10 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:51 | 只看該作者
Theodore P. Hill,Ulrich Krengel algorithms for ... which is the problem to satisfy as many conjunctions, each of size at most ., as possible. As observed by Trevisan, this leads to approximation algorithms with the same approximation ratio for the more general problem ..., where instead of conjunctions arbitrary .-ary constraints
38#
發(fā)表于 2025-3-28 03:50:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:55:31 | 只看該作者
40#
發(fā)表于 2025-3-28 13:42:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
蓬莱市| 安远县| 沙坪坝区| 河源市| 疏勒县| 墨江| 浦城县| 金坛市| 孟津县| 桃园县| 天祝| 宁河县| 手游| 塔城市| 弋阳县| 石家庄市| 乌什县| 兴业县| 寿光市| 乌兰县| 扶沟县| 滨海县| 汕头市| 延安市| 临猗县| 颍上县| 精河县| 保亭| 扎鲁特旗| 宁德市| 湖北省| 新蔡县| 平江县| 梧州市| 汉阴县| 揭西县| 张家界市| 通江县| 凯里市| 衡东县| 闽侯县|