找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation, Complex Analysis, and Potential Theory; N. Arakelian,P. M. Gauthier,G. Sabidussi Book 2001 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 欺侮
31#
發(fā)表于 2025-3-26 22:08:09 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:53 | 只看該作者
https://doi.org/10.1007/BFb0111932y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
33#
發(fā)表于 2025-3-27 08:33:15 | 只看該作者
Harmonic approximation and its applications,y harmonic functions on a fixed open superset. Finally, we return to applications, and explain how some problems concerning the boundary behaviour of harmonic functions have recently been solved using harmonic approximation.
34#
發(fā)表于 2025-3-27 11:50:17 | 只看該作者
https://doi.org/10.1007/BFb0111694given sequence of complex numbers as its (multiplicity) index values..To examine the second problem, we present a new, purely analytic approach. Finally, we suggest an analytic method of construction of entire functions of finite order with joint deficient functions and index values.
35#
發(fā)表于 2025-3-27 17:39:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:36:56 | 只看該作者
37#
發(fā)表于 2025-3-27 22:03:55 | 只看該作者
38#
發(fā)表于 2025-3-28 05:44:31 | 只看該作者
Springer Tracts in Modern Physics 12h uniform and tangential approximation are treated. We also give some applications of the theory to the construction of harmonic functions exhibiting various kinds of unexpected behaviour. The course is partly intended to provide preparatory material for S. J. Gardiner’ course “Harmonic approximation and applications”, published in this volume.
39#
發(fā)表于 2025-3-28 10:14:01 | 只看該作者
40#
發(fā)表于 2025-3-28 11:22:13 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同江市| 长武县| 迁安市| 五大连池市| 古交市| 莆田市| 巴彦县| 类乌齐县| 霸州市| 瑞丽市| 泰和县| 藁城市| 海兴县| 隆回县| 于田县| 贞丰县| 灌南县| 武汉市| 留坝县| 确山县| 嘉黎县| 襄垣县| 永丰县| 天全县| 漠河县| 吴川市| 卫辉市| 郁南县| 墨脱县| 宜君县| 普陀区| 新巴尔虎左旗| 建始县| 吴堡县| 友谊县| 清流县| 铅山县| 封丘县| 吉安县| 平潭县| 于田县|