找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation with Positive Linear Operators and Linear Combinations; Vijay Gupta,Gancho Tachev Book 2017 Springer International Publishin

[復(fù)制鏈接]
樓主: Nixon
11#
發(fā)表于 2025-3-23 11:07:51 | 只看該作者
Direct Estimates for Some New Operators,In this chapter we deal with direct estimates for some integral type operators, established in the recent years.
12#
發(fā)表于 2025-3-23 17:04:03 | 只看該作者
,Convergence for Operators Based on Pǎltǎnea Basis,In the year 1987 Chen [36] and Goodman–Sharma [81] introduced the genuine Bernstein polynomials, which preserve linear functions. Some other generalizations of Bernstein polynomials have been introduced and studied in [6, 18, 90, 100, 102, 108, 152] and [171] etc., but they only reproduce constant functions.
13#
發(fā)表于 2025-3-23 18:05:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:41:55 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:08 | 只看該作者
Springer Tracts in Modern Physics 13ry. Apart from the earlier known examples several new sequences of p.l.o. were introduced and their approximation properties have been discussed in the last few decades. There are several books in approximation theory, which deal with the linear and nonlinear operators of different kind. We mention
18#
發(fā)表于 2025-3-24 18:51:22 | 只看該作者
19#
發(fā)表于 2025-3-24 22:22:45 | 只看該作者
Springer Tracts in Modern Physics 13suppose the same definitions for the weight function .(.) and for the domain . of the operators . To establish the inverse results for approximation by .. we need two Bernstein type inequalities and the Berens–Lorentz lemma, which results we formulate as follows:
20#
發(fā)表于 2025-3-24 23:25:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔西县| 永寿县| 友谊县| 百色市| 城市| 沅陵县| 德阳市| 越西县| 镇雄县| 郁南县| 上饶县| 临泽县| 潼南县| 建阳市| 关岭| 方城县| 左权县| 隆昌县| 龙泉市| 秦安县| 奉新县| 乌拉特前旗| 林芝县| 凤阳县| 昌吉市| 莱芜市| 崇信县| 德惠市| 洪雅县| 阿坝县| 隆尧县| 通河县| 石渠县| 连山| 嘉荫县| 大冶市| 台湾省| 瑞安市| 台前县| 绵阳市| 长沙市|