找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation by Solutions of Partial Differential Equations; B. Fuglede,M. Goldstein,L. Rogge Book 1992 Springer Science+Business Media D

[復(fù)制鏈接]
樓主: PLY
21#
發(fā)表于 2025-3-25 05:47:41 | 只看該作者
H. Lindemann,F. Keller,H. G. Velcovskye operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
22#
發(fā)表于 2025-3-25 10:16:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:03:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:51 | 只看該作者
26#
發(fā)表于 2025-3-26 00:40:46 | 只看該作者
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
Mean Value Theorems and Best ,,-Approximation,ual) two functions .. and .. are identified if they are equal Lebesgue a.e.. Further, let . be a vector subspace of ..(.) and suppose that . ? ..(.) ., and that .* ? .. Then .* is called a ...-... if and only if‖.? .*‖. ≥ ‖. ? .‖... ? ..
28#
發(fā)表于 2025-3-26 09:00:12 | 只看該作者
Mapping Properties of the Wave Operators in Scattering Theory,e operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
29#
發(fā)表于 2025-3-26 15:13:11 | 只看該作者
The Role of the Hilbert Transform in 2-Dimensional Aerodynamics, known that the Hilbert transform . plays an important role in various areas of aerodynamics for thin obstacles [4], and in this note we show, as an application of ., how to define the natural steady flows outside a thin obstacle.
30#
發(fā)表于 2025-3-26 17:46:22 | 只看該作者
K. G. Blume,H. Arnold,G. W. L?hrTwo separate but related topics are discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 桃江县| 丹巴县| 县级市| 增城市| 昭平县| 杂多县| 连山| 长丰县| 金阳县| 西城区| 涟源市| 罗田县| 龙山县| 金华市| 保德县| 邯郸市| 高雄市| 蒲城县| 太仆寺旗| 泌阳县| 定襄县| 廊坊市| 陆丰市| 沭阳县| 集贤县| 石嘴山市| 花莲市| 崇信县| 辉南县| 波密县| 芜湖县| 灵川县| 芒康县| 巴林右旗| 夹江县| 郎溪县| 天等县| 镇雄县| 元谋县| 宁德市|