找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation and Online Algorithms; 14th International W Klaus Jansen,Monaldo Mastrolilli Conference proceedings 2017 Springer Internation

[復(fù)制鏈接]
樓主: 斷頭臺
51#
發(fā)表于 2025-3-30 08:40:33 | 只看該作者
New Integrality Gap Results for the Firefighters Problem on Trees,tions for the firefighter problem. We first show a matching lower bound of . on the integrality gap of the canonical LP. This result relies on a powerful . that can be used to derive integrality gap results in other related settings. Next, we consider the canonical LP augmented with simple additiona
52#
發(fā)表于 2025-3-30 14:16:22 | 只看該作者
53#
發(fā)表于 2025-3-30 19:07:58 | 只看該作者
54#
發(fā)表于 2025-3-31 00:27:04 | 只看該作者
55#
發(fā)表于 2025-3-31 02:45:57 | 只看該作者
Gewebsmastzellen und Mastzellen-Reticulose,f the online and offline models. We provide several results, including a general result for sum coloring and results for the classic graph coloring problem on restricted graph classes: We show tight bounds for any graph class containing trees as a subclass (e.g., forests, bipartite graphs, planar gr
56#
發(fā)表于 2025-3-31 07:30:11 | 只看該作者
57#
發(fā)表于 2025-3-31 09:33:28 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:28 | 只看該作者
59#
發(fā)表于 2025-3-31 20:04:56 | 只看該作者
Dynamic Traveling Repair Problem with an Arbitrary Time Window,or service at nodes in a metric space and a time window for each request. The goal is to maximize the number of requests served during their time window. The time to traverse between two points is equal to the distance. Serving a request requires unit time. Irani et al., SODA 2002 considered the spe
60#
發(fā)表于 2025-4-1 00:46:05 | 只看該作者
A PTAS for the Cluster Editing Problem on Planar Graphs,of disjoint cliques. The cluster editing problem is closely related to correlation clustering and has applications, e.g. in image segmentation. For general graphs this problem is .-hard. In this paper we present an efficient polynomial time approximation scheme for the cluster editing problem on gra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 湘潭县| 寿阳县| 北安市| 遂平县| 田林县| 福州市| 伊金霍洛旗| 楚雄市| 弋阳县| 渑池县| 博客| 德兴市| 兴海县| 浪卡子县| 宁强县| 进贤县| 库车县| 惠安县| 留坝县| 东山县| 余庆县| 衢州市| 苍溪县| 花莲市| 克东县| 随州市| 临西县| 梅河口市| 长顺县| 荃湾区| 辽阳市| 庆元县| 武城县| 平南县| 米脂县| 桓仁| 满洲里市| 南岸区| 正阳县| 九江市|