找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation and Computation: A Festschrift in Honor of Walter Gautschi; Proceedings of the P R. V. M. Zahar Conference proceedings 1994 S

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:53:55 | 只看該作者
22#
發(fā)表于 2025-3-25 08:35:13 | 只看該作者
Sharp Bounds for the Lebesgue Constant in Quadratic Nodal Spline Interpolation,te, in the quadratic case . = 3, sharp upper and lower bounds for ∥.∥. The exact value ∥.∥ = 1.25 in the case of equidistant primary knots is then immediately derivable. Some implications of the results, as well as an application in quadrature, are pointed out and briefly discussed.
23#
發(fā)表于 2025-3-25 13:24:53 | 只看該作者
24#
發(fā)表于 2025-3-25 19:49:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:35:39 | 只看該作者
Ergebnisse der Chirurgie und Orthop?dieAs a consequence, we obtain that, among all extended Gaussian formulae whose additional nodes interlace with the Gaussian ones, the Gauss-Kronrod formula .. is asymptotically optimal with respect to ..
26#
發(fā)表于 2025-3-26 04:05:34 | 只看該作者
,Altindische Lehren von den Knochenbrüchen,litz matrices. Here we use an analogy with predicting stationary stochastic processes to motivate a simple proof of this formula, as well as of the main facts in the classical trigonometric moment problem.
27#
發(fā)表于 2025-3-26 07:36:18 | 只看該作者
28#
發(fā)表于 2025-3-26 11:41:27 | 只看該作者
29#
發(fā)表于 2025-3-26 12:57:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:46:51 | 只看該作者
Inequalities and Monotonicity Properties for Gamma and ,-Gamma Functions, without having complete monotonicity. All of the results lead to inequalities for these functions. Many of these were motivated by the bounds in a 1959 paper by Walter Gautschi. We show that some of the bounds can be extended to complex arguments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海南省| 山阳县| 岐山县| 象山县| 千阳县| 泽普县| 丰镇市| 万源市| 石首市| 大荔县| 腾冲县| 通江县| 新郑市| 克什克腾旗| 方城县| 邵阳市| 呼图壁县| 贵港市| 南昌县| 彭阳县| 郸城县| 固阳县| 潢川县| 尼玛县| 万安县| 革吉县| 黄骅市| 宜昌市| 大冶市| 五指山市| 淳化县| 陇川县| 深水埗区| 宜春市| 垫江县| 吉木萨尔县| 新昌县| 佳木斯市| 南昌市| 尼勒克县| 县级市|