找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory, Spline Functions and Applications; S. P. Singh Book 1992 Springer Science+Business Media Dordrecht 1992 Invariant.Ma

[復(fù)制鏈接]
樓主: Disclose
51#
發(fā)表于 2025-3-30 10:06:54 | 只看該作者
52#
發(fā)表于 2025-3-30 14:16:48 | 只看該作者
53#
發(fā)表于 2025-3-30 16:37:15 | 只看該作者
,The Equivalence of the Usual and Quotient Topologies for ,,(,) when , ? ∝, is Whitney p-Regular,e of the continuity constants. It follows that in the equivalence of Markov and Sobolev type inequalities given in [2], the quotient norm may be replaced by the usual norm in case E is Whitney p-regular.
54#
發(fā)表于 2025-3-31 00:17:26 | 只看該作者
55#
發(fā)表于 2025-3-31 03:43:01 | 只看該作者
56#
發(fā)表于 2025-3-31 08:27:40 | 只看該作者
57#
發(fā)表于 2025-3-31 11:04:23 | 只看該作者
Rational Hermite Interpolation in One and More Variables,n scheme and a non-branched continued fraction representation, both for the non-degenerate and the degenerate case. For general data sets only results for ordinary rational interpolation in the case of non-degeneracy were obtained in [CUYTd].
58#
發(fā)表于 2025-3-31 15:13:10 | 只看該作者
1389-2185 villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics cov
59#
發(fā)表于 2025-3-31 17:45:17 | 只看該作者
60#
發(fā)表于 2025-4-1 00:14:26 | 只看該作者
,Die H?mangiome und ihre Behandlung,troduce a refined concept of an approximation scheme with respect to which a refined concept of n-widths can be defined. Theorems about generalized n-widths illustrate the fact that this is a genuine generalization. We finish by the question of finding concept of n-widths in the context of Orlicz modular spaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾川县| 涿鹿县| 宣武区| 晋中市| 沙湾县| 温州市| 林周县| 商洛市| 门源| 江华| 南木林县| 资中县| 石屏县| 沁水县| 明水县| 沁阳市| 中山市| 育儿| 贵州省| 堆龙德庆县| 永顺县| 泰安市| 许昌市| 金门县| 昭觉县| 黎平县| 广丰县| 舟曲县| 汾西县| 平度市| 澄迈县| 达孜县| 新龙县| 桃园市| 沁水县| 陵水| 伊宁县| 昆明市| 汶川县| 沾化县| 温州市|