找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory and Spline Functions; S. P. Singh,J. W. H. Burry,B. Watson Book 1984 D. Reidel Publishing Company, Dordrecht, Holland

[復(fù)制鏈接]
樓主: Adams
41#
發(fā)表于 2025-3-28 16:41:29 | 只看該作者
42#
發(fā)表于 2025-3-28 20:10:22 | 只看該作者
On Spaces of Piecewise Polynomials in Two Variables,The purpose of this paper is to survey the progress which has been made in the last several years in developing a theory for spaces of piecewise polynomials in two variables. The ultimate goal for this area would be to have a complete analog of the univariate theory, but as we shall see, much remains to be done.
43#
發(fā)表于 2025-3-29 02:31:29 | 只看該作者
44#
發(fā)表于 2025-3-29 06:43:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:00:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:01:55 | 只看該作者
B-Splines on the Circle and Trigonometric B-Splines,We shall first introduce the notion of circle splines. Denote by Π. the space of polynomials of degree at most n on the unit circle U = {z € (?: |z| = 1}.
47#
發(fā)表于 2025-3-29 16:37:08 | 只看該作者
48#
發(fā)表于 2025-3-29 23:17:15 | 只看該作者
Four Lectures on Multivariate Approximation,(many-variable) approximation. In either case, the central problem of best approximation can be stated thus: a Banach space X and a subspace Y of X are prescribed, and for a particular x ∈ X we seek a best approximation of x in Y.
49#
發(fā)表于 2025-3-30 03:10:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:45:06 | 只看該作者
Birkhoff Interpolation on the Roots of Unity,, the general problem of Birkhoff interpolation on the roots of unity has not received enough attention. Even for a three row incidence matrix E we do not know any simple criterion for settling its regularity on the cube roots of unity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥乡县| 易门县| 蒲城县| 精河县| 乃东县| 塔城市| 边坝县| 平阴县| 保山市| 大兴区| 枞阳县| 鄯善县| 绍兴县| 宕昌县| 深水埗区| 连江县| 澄城县| 辛集市| 盱眙县| 长宁县| 军事| 景东| 治多县| 桓台县| 射阳县| 德惠市| 葵青区| 镇坪县| 鄂州市| 康马县| 万盛区| 遂川县| 米易县| 肥西县| 蒲城县| 桃园县| 金溪县| 石嘴山市| 闸北区| 新丰县| 大埔县|