找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory and Spline Functions; S. P. Singh,J. W. H. Burry,B. Watson Book 1984 D. Reidel Publishing Company, Dordrecht, Holland

[復(fù)制鏈接]
樓主: Adams
21#
發(fā)表于 2025-3-25 04:58:02 | 只看該作者
Exchange Algorithms, Error Estimations and Strong Unicity in Convex Programming and Chebyshev Appro a finite sequence of finite sub-problems, which is called an optimization problem with respect to a .. Modifying a strategy of Carasso and Laurent we replace in the.exchange theorem the zero-checks by practical δ-checks with δ > 0. This allows us to reduce the numerical calculations of the function
22#
發(fā)表于 2025-3-25 10:36:14 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:07 | 只看該作者
24#
發(fā)表于 2025-3-25 16:43:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:56:23 | 只看該作者
26#
發(fā)表于 2025-3-26 00:54:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:14:44 | 只看該作者
Birkhoff Interpolation on the Roots of Unity,, the general problem of Birkhoff interpolation on the roots of unity has not received enough attention. Even for a three row incidence matrix E we do not know any simple criterion for settling its regularity on the cube roots of unity.
28#
發(fā)表于 2025-3-26 11:05:29 | 只看該作者
H-Sets for Non-Linear Constrained Approximation,ar approximation by sets not satisfying the Haar condition. The usefulness of H-sets for the characterisation and anlysis of best approximation in this non-Haar setting is set out in Brannigan [1]. A complete exposition in terms of functions in a normed linear setting is given in Brannigan [2]. For
29#
發(fā)表于 2025-3-26 16:39:36 | 只看該作者
30#
發(fā)表于 2025-3-26 19:06:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
光山县| 全州县| 黎平县| 阿图什市| 清涧县| 陵水| 郎溪县| SHOW| 金湖县| 南溪县| 阜南县| 湘阴县| 天门市| 奉贤区| 永修县| 高青县| 常山县| 孟连| 麻江县| 东阳市| 聂荣县| 巫山县| 信阳市| 崇礼县| 宁南县| 莱西市| 景宁| 洛宁县| 乌鲁木齐县| 新化县| 和政县| 寿光市| 商丘市| 桂林市| 永昌县| 贵德县| 和田县| 道孚县| 越西县| 沅陵县| 鄂州市|