找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory and Harmonic Analysis on Spheres and Balls; Feng Dai,Yuan Xu Book 2013 Springer Science+Business Media New York 2013

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 13:19:54 | 只看該作者
Harmonic Analysis on the Unit Ball, however, that analysis on the unit ball is closely related to analysis on the unit sphere. Indeed, a large portion of harmonic analysis on the unit ball can be deduced from its counterparts on the sphere.
12#
發(fā)表于 2025-3-23 16:47:44 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:29 | 只看該作者
14#
發(fā)表于 2025-3-24 02:10:22 | 只看該作者
Harmonic Analysis Associated with Reflection Groups,ighted approximation and harmonic analysis on the sphere, which turn out to be indispensable for the corresponding theory, even for unweighted approximation and harmonic analysis, on the unit ball and on the simplex, as will be seen in later chapters.
15#
發(fā)表于 2025-3-24 05:51:49 | 只看該作者
1439-7382 ful research material for both experts and advanced graduate.This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area.? While the first part of the book contains mainstream mate
16#
發(fā)表于 2025-3-24 08:45:57 | 只看該作者
https://doi.org/10.1007/978-3-662-32547-6the Poisson integrals for the Fourier expansion in spherical harmonics, discussed in the second section, are convolution operators, which are also multiplier operators. The convolution and translation operators are used to define and study the Hardy–Littlewood maximal function on the sphere in the third section.
17#
發(fā)表于 2025-3-24 10:42:48 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:20 | 只看該作者
Zeitschrift für die gesamte Anatomiech results for .-harmonic expansions with respect to the product ., which cover results for ordinary spherical harmonic expansions. The proof of such results depends on the boundedness of proj ection operators, which will be established in the first section, assuming a critical estimate.
19#
發(fā)表于 2025-3-24 21:19:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛冈县| 巫溪县| 昭觉县| 思南县| 平乐县| 东辽县| 克东县| 自治县| 阳西县| 宁海县| 比如县| 福州市| 白河县| 榆树市| 广宁县| 寿阳县| 双流县| 渝北区| 曲水县| 绥德县| 玉田县| 武汉市| 武鸣县| 临湘市| 阿克苏市| 云龙县| 黔南| 磐石市| 柏乡县| 晋江市| 临湘市| 尚志市| 桂东县| 泸溪县| 河池市| 石屏县| 开远市| 修水县| 台前县| 芦溪县| 银川市|