找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Methods in Science and Engineering; Reza N. Jazar Book 2020 Springer Science+Business Media, LLC, part of Springer Nature 20

[復(fù)制鏈接]
樓主: ODDS
11#
發(fā)表于 2025-3-23 10:48:36 | 只看該作者
Numerical Continued Fractionshere . and . are integers. Numbers are also either algebraic or transcendental. The method expressing rational and irrational numbers by continued fractions will be covered in this chapter to make the reader ready to solve differential equations in continued fractions.
12#
發(fā)表于 2025-3-23 14:08:30 | 只看該作者
Mathieu Equationd as a base to introduce some approximate methods that are useful in stability analysis of parametric differential equations. The Mathieu equation is the simplest parametric equation that directly or indirectly appears in stability analysis of dynamic systems.
13#
發(fā)表于 2025-3-23 19:51:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:25:47 | 只看該作者
Strategien und Konzepte der Erfolgskontrolleations for the most general coverage. The goals of dynamic dimensional analysis are: (1) to minimize the number of variables in analysis of a system, (2) to express the mathematical model of systems by nondimensionalized equations to get the results of the investigation to be unit and size independe
15#
發(fā)表于 2025-3-24 03:22:35 | 只看該作者
16#
發(fā)表于 2025-3-24 06:38:06 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:12 | 只看該作者
18#
發(fā)表于 2025-3-24 16:14:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:44:20 | 只看該作者
20#
發(fā)表于 2025-3-25 01:59:31 | 只看該作者
http://image.papertrans.cn/b/image/160390.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封县| 新乡市| 建昌县| 广饶县| 易门县| 汶上县| 武城县| 浪卡子县| 绥化市| 通榆县| 北安市| 喀什市| 门源| 宣汉县| 萍乡市| 朔州市| 永仁县| 新余市| 微山县| 亚东县| 勃利县| 石嘴山市| 信丰县| 襄城县| 曲周县| 饶平县| 体育| 徐汇区| 蕉岭县| 两当县| 二连浩特市| 阿克陶县| 高邮市| 金乡县| 云南省| 青铜峡市| 正宁县| 彭州市| 堆龙德庆县| 逊克县| 玛沁县|