找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Algorithms for Combinatorial Optimization; International Worksh Klaus Jansen,José Rolim Conference proceedings 1998 Springer-

[復(fù)制鏈接]
樓主: 哥哥大傻瓜
31#
發(fā)表于 2025-3-27 01:01:43 | 只看該作者
Erfolgsfaktoren im Stiftungsmanagement is known to be .-hard, but its approximation complexity is not known. For the general problem only an approximation ratio of ?(n.) has been proved (Kortsarz and Peleg (1993)). In the last years several authors analyzed the case .. In this case Asahiro et al. (1996) showed a constant factor approxim
32#
發(fā)表于 2025-3-27 02:10:11 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:11:31 | 只看該作者
Lower bounds for on-line scheduling with precedence constraints on identical machines,deterministic algorithms with preemption, and a lower bound of 2 ? O(1/.) on the competitive ratio of any randomized algorithm with preemption. All the lower bounds hold even for sequences of unit jobs only. The best algorithm that is known for this problem is the well known List Scheduling algorith
35#
發(fā)表于 2025-3-27 16:01:32 | 只看該作者
Instant recognition of half integrality and 2-approximations,ver..Problems that are amenable to the analysis provided here are easily recognized. The analysis itself is entirely technical and involves manipulating the constraints and transforming them to a totally unimodular system while losing no more than a factor of 2 in the integrality.
36#
發(fā)表于 2025-3-27 20:47:01 | 只看該作者
37#
發(fā)表于 2025-3-28 01:31:17 | 只看該作者
38#
發(fā)表于 2025-3-28 05:52:36 | 只看該作者
https://doi.org/10.1007/978-3-8350-9627-1ver..Problems that are amenable to the analysis provided here are easily recognized. The analysis itself is entirely technical and involves manipulating the constraints and transforming them to a totally unimodular system while losing no more than a factor of 2 in the integrality.
39#
發(fā)表于 2025-3-28 09:17:22 | 只看該作者
40#
發(fā)表于 2025-3-28 11:56:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 乐昌市| 开化县| 屏山县| 亚东县| 本溪市| 温宿县| 宁南县| 蒙城县| 长岭县| 定边县| 祁东县| 定结县| 南通市| 含山县| 浦北县| 沈阳市| 华宁县| 色达县| 类乌齐县| 富源县| 乐都县| 连山| 景东| 汉中市| 文昌市| 沈阳市| 桂阳县| 高碑店市| 宜君县| 新兴县| 慈利县| 裕民县| 宁陵县| 新营市| 湘西| 平乡县| 晋宁县| 屏东市| 宁蒗| 梅河口市|