找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximability of Optimization Problems through Adiabatic Quantum Computation; William Cruz-Santos,Guillermo Morales-Luna Book 2014 Sprin

[復(fù)制鏈接]
查看: 21733|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:20:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Approximability of Optimization Problems through Adiabatic Quantum Computation
影響因子2023William Cruz-Santos,Guillermo Morales-Luna
視頻videohttp://file.papertrans.cn/161/160356/160356.mp4
學(xué)科分類Synthesis Lectures on Quantum Computing
圖書(shū)封面Titlebook: Approximability of Optimization Problems through Adiabatic Quantum Computation;  William Cruz-Santos,Guillermo Morales-Luna Book 2014 Sprin
影響因子The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schr?dinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC
Pindex Book 2014
The information of publication is updating

書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation影響因子(影響力)




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation影響因子(影響力)學(xué)科排名




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation被引頻次




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation被引頻次學(xué)科排名




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation年度引用




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation年度引用學(xué)科排名




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation讀者反饋




書(shū)目名稱Approximability of Optimization Problems through Adiabatic Quantum Computation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:37:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:39 | 只看該作者
1945-9726 f an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solu
5#
發(fā)表于 2025-3-22 09:36:30 | 只看該作者
6#
發(fā)表于 2025-3-22 13:11:33 | 只看該作者
Wie Suchmaschinen funktionierenming, and artificial intelligence. Its importance is in modeling many branches of optimization problems into a general scheme based on quadratic forms. This general scheme can be used to design AQC algorithms by means of the Adiabatic Theorem in order to optimize the underlying pseudo-Boolean maps.
7#
發(fā)表于 2025-3-22 19:31:04 | 只看該作者
AQC for Pseudo-Boolean Optimization,ming, and artificial intelligence. Its importance is in modeling many branches of optimization problems into a general scheme based on quadratic forms. This general scheme can be used to design AQC algorithms by means of the Adiabatic Theorem in order to optimize the underlying pseudo-Boolean maps.
8#
發(fā)表于 2025-3-22 21:49:56 | 只看該作者
Synthesis Lectures on Quantum Computinghttp://image.papertrans.cn/b/image/160356.jpg
9#
發(fā)表于 2025-3-23 02:45:23 | 只看該作者
978-3-031-01391-1Springer Nature Switzerland AG 2014
10#
發(fā)表于 2025-3-23 09:01:56 | 只看該作者
Wie Suchmaschinen funktionierenming, and artificial intelligence. Its importance is in modeling many branches of optimization problems into a general scheme based on quadratic forms. This general scheme can be used to design AQC algorithms by means of the Adiabatic Theorem in order to optimize the underlying pseudo-Boolean maps.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 柘城县| 长丰县| 黔西| 伊宁县| 驻马店市| 洛宁县| 高密市| 称多县| 辽宁省| 武冈市| 应城市| 湘潭市| 渝北区| 九台市| 宁南县| 阿荣旗| 长顺县| 宜春市| 胶南市| 关岭| 汝城县| 项城市| 开阳县| 昌江| 元氏县| 新巴尔虎右旗| 门头沟区| 和田市| 乐安县| 科尔| 万源市| 绿春县| 碌曲县| 延川县| 寻乌县| 孝昌县| 玛纳斯县| 宜城市| 凤阳县| 平和县|